Further developments are introduced in the theory of finite size errors in
quantum many-body simulations of extended systems using periodic boundary
conditions. We show that our recently introduced Model Periodic Coulomb
interaction [A. J. Williamson et al., Phys. Rev. B 55, R4851 (1997)] can be
applied consistently to all Coulomb interactions in the system. The Model
Periodic Coulomb interaction greatly reduces the finite size errors in quantum
many-body simulations. We illustrate the practical application of our
techniques with Hartree-Fock and variational and diffusion quantum Monte Carlo
calculations for ground and excited state calculations. We demonstrate that the
finite size effects in electron promotion and electron addition/subtraction
excitation energy calculations are very similar.Comment: 15 pages, 6 figures. To appear in Phys. Rev.