8 research outputs found

    Characteristics of Interstitial Fibrosis and Inflammatory Cell Infiltration in Right Ventricles of Systemic Sclerosis-Associated Pulmonary Arterial Hypertension

    Get PDF
    Objective. Systemic sclerosis-associated pulmonary arterial hypertension (SScPAH) has a disturbed function of the right ventricle (RV) when compared to idiopathic PAH (IPAH). Systemic sclerosis may also affect the heart. We hypothesize that RV differences may occur at the level of interstitial inflammation and—fibrosis and compared inflammatory cell infiltrate and fibrosis between the RV of SScPAH, IPAH, and healthy controls. Methods. Paraffin-embedded tissue samples of RV and left ventricle (LV) from SScPAH (n = 5) and IPAH (n = 9) patients and controls (n = 4) were picrosirius red stained for detection of interstitial fibrosis, which was quantified semiautomatically. Neutrophilic granulocytes (MPO), macrophages (CD68), and lymphocytes (CD45) were immunohistochemically stained and only interstitial leukocytes were counted. Presence of epi- or endocardial inflammation, and of perivascular or intimal fibrosis of coronary arteries was assessed semiquantitatively (0–3: absent to extensive). Results. RV's of SScPAH showed significantly more inflammatory cells than of IPAH (cells/mm2, mean ± sd MPO 11 ± 3 versus 6 ± 1; CD68 11 ± 3 versus 6 ± 1; CD45 11 ± 1 versus 5 ± 1 , P < .05) and than of controls. RV interstitial fibrosis was similar in SScPAH and IPAH (4 ± 1 versus 5 ± 1%, P = .9), and did not differ from controls (5 ± 1%, P = .8). In 4 SScPAH and 5 IPAH RV's foci of replacement fibrosis were found. No differences were found on epi- or endocardial inflammation or on perivascular or intimal fibrosis of coronary arteries. Conclusion. SScPAH RVs display denser inflammatory infiltrates than IPAH, while they do not differ with respect to interstitial fibrosis. Whether increased inflammatory status is a contributor to altered RV function in SScPAH warrants further research

    Exploring the vertebrate fauna of the Bird’s Head Peninsula (Indonesia, West Papua) through DNA barcodes

    Get PDF
    Biodiversity knowledge is widely heterogeneous across the Earth's biomes. Some areas, due to their remoteness and difficult access, present large taxonomic knowledge gaps. Mostly located in the tropics, these areas have frequently experienced a fast development of anthropogenic activities during the last decades and are therefore of high conservation concerns. The biodiversity hotspots of Southeast Asia exemplify the stakes faced by tropical countries. While the hotspots of Sundaland (Java, Sumatra, Borneo) and Wallacea (Sulawesi, Moluccas) have long attracted the attention of biologists and conservationists alike, extensive parts of the Sahul area, in particular the island of New Guinea, have been much less explored biologically. Here, we describe the results of a DNA-based inventory of aquatic and terrestrial vertebratecommunities, which was the objective of a multidisciplinary expedition to the Bird's Head Peninsula (West Papua, Indonesia) conducted between 17 October and 20 November 2014. This expedition resulted in the assembly of 1005 vertebrate DNA barcodes. Based on the use of multiple species-delimitation methods (GMYC, PTP, RESL, ABGD), 264 molecular operational taxonomic units (MOTUs) were delineated, among which 75 were unidentified and an additional 48 were considered cryptic. This study suggests that the diversity of vertebrates of the Bird's Head is severely underestimated and considerations on the evolutionary origin and taxonomic knowledge of these biotas are discussed.Fieldwork and laboratory activities were supported by the Lengguru 2014 Project (www.lengguru.org), conducted by the French National Research Institute for Sustainable Development (IRD), the Indonesian Institute of Sciences (LIPI) with the Research Centre for Biology (RCB), and the Politeknik KP Sorong, with the help of the Institut Français in Indonesia (IFI) and the French embassy in Jakarta, with corporate sponsorship from COLAS SA Company (Environment Department), Total Foundation, ABS, Wasco, Veolia Eau, SDV-Bolloré,Peer reviewe

    Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021 : a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    Background Lower respiratory infections (LRIs) are a major global contributor to morbidity and mortality. In 2020–21, non-pharmaceutical interventions associated with the COVID-19 pandemic reduced not only the transmission of SARS-CoV-2, but also the transmission of other LRI pathogens. Tracking LRI incidence and mortality, as well as the pathogens responsible, can guide health-system responses and funding priorities to reduce future burden. We present estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 of the burden of non-COVID-19 LRIs and corresponding aetiologies from 1990 to 2021, inclusive of pandemic effects on the incidence and mortality of select respiratory viruses, globally, regionally, and for 204 countries and territories. Methods We estimated mortality, incidence, and aetiology attribution for LRI, defined by the GBD as pneumonia or bronchiolitis, not inclusive of COVID-19. We analysed 26 259 site-years of mortality data using the Cause of Death Ensemble model to estimate LRI mortality rates. We analysed all available age-specific and sex-specific data sources, including published literature identified by a systematic review, as well as household surveys, hospital admissions, health insurance claims, and LRI mortality estimates, to generate internally consistent estimates of incidence and prevalence using DisMod-MR 2.1. For aetiology estimation, we analysed multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature data using a network analysis model to produce the proportion of LRI deaths and episodes attributable to the following pathogens: Acinetobacter baumannii, Chlamydia spp, Enterobacter spp, Escherichia coli, fungi, group B streptococcus, Haemophilus influenzae, influenza viruses, Klebsiella pneumoniae, Legionella spp, Mycoplasma spp, polymicrobial infections, Pseudomonas aeruginosa, respiratory syncytial virus (RSV), Staphylococcus aureus, Streptococcus pneumoniae, and other viruses (ie, the aggregate of all viruses studied except influenza and RSV), as well as a residual category of other bacterial pathogens. Findings Globally, in 2021, we estimated 344 million (95% uncertainty interval [UI] 325–364) incident episodes of LRI, or 4350 episodes (4120–4610) per 100 000 population, and 2·18 million deaths (1·98–2·36), or 27·7 deaths (25·1–29·9) per 100 000. 502 000 deaths (406 000–611 000) were in children younger than 5 years, among which 254 000 deaths (197 000–320 000) occurred in countries with a low Socio-demographic Index. Of the 18 modelled pathogen categories in 2021, S pneumoniae was responsible for the highest proportions of LRI episodes and deaths, with an estimated 97·9 million (92·1–104·0) episodes and 505 000 deaths (454 000–555 000) globally. The pathogens responsible for the second and third highest episode counts globally were other viral aetiologies (46·4 million [43·6–49·3] episodes) and Mycoplasma spp (25·3 million [23·5–27·2]), while those responsible for the second and third highest death counts were S aureus (424 000 [380 000–459 000]) and K pneumoniae (176 000 [158 000–194 000]). From 1990 to 2019, the global all-age non-COVID-19 LRI mortality rate declined by 41·7% (35·9–46·9), from 56·5 deaths (51·3–61·9) to 32·9 deaths (29·9–35·4) per 100 000. From 2019 to 2021, during the COVID-19 pandemic and implementation of associated non-pharmaceutical interventions, we estimated a 16·0% (13·1–18·6) decline in the global all-age non-COVID-19 LRI mortality rate, largely accounted for by a 71·8% (63·8–78·9) decline in the number of influenza deaths and a 66·7% (56·6–75·3) decline in the number of RSV deaths. Interpretation Substantial progress has been made in reducing LRI mortality, but the burden remains high, especially in low-income and middle-income countries. During the COVID-19 pandemic, with its associated non-pharmaceutical interventions, global incident LRI cases and mortality attributable to influenza and RSV declined substantially. Expanding access to health-care services and vaccines, including S pneumoniae, H influenzae type B, and novel RSV vaccines, along with new low-cost interventions against S aureus, could mitigate the LRI burden and prevent transmission of LRI-causing pathogens. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care (UK)

    The past and future of sustainable concrete: A critical review and new strategies on cement-based materials

    No full text
    corecore