4,010 research outputs found

    Investigation of sterilization of secondary batteries Final report, Oct. 26, 1965 - Jun. 26, 1966

    Get PDF
    Thermally sterilized nickel cadmium battery developmen

    Investigation of sterilization of secondary batteries Quarterly progress report no. 1, Oct. 26, 1965 - Jan. 26, 1966

    Get PDF
    Asbestos and polypropylene separators for nickel-cadmium cells which are sterilize

    A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Get PDF
    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3,700 are used to verify the accuracy and physical fidelity of the formulation.Comment: 32 pages, 9 figures; preprint submitted to Journal of Computational Physic

    Dynamic Factors in the Presence of Block Structure

    Get PDF
    Macroeconometric data often come under the form of large panels of time series, themselves decomposing into smaller but still quite large subpanels or blocks. We show how the dynamic factor analysis method proposed in Forni et al (2000), combined with the identification method of Hallin and Liska (2007), allows for identifying and estimating joint and block-specific common factors. This leads to a more sophisticated analysis of the structures of dynamic interrelations within and between the blocks in such datasets, along with an informative decomposition of explained variances. The method is illustrated with an analysis of the Industrial Production Index data for France, Germany, and Italy.Panel data; Time series; High dimensional data; Dynamic factor model; Business cycle; Block specific factors; Dynamic principal components; Information criterion.

    Spinning probes and helices in AdS3_3

    Get PDF
    We study extremal curves associated with a functional which is linear in the curve's torsion. The functional in question is known to capture the properties of entanglement entropy for two-dimensional conformal field theories with chiral anomalies and has potential applications in elucidating the equilibrium shape of elastic linear structures. We derive the equations that determine the shape of its extremal curves in general ambient spaces in terms of geometric quantities. We show that the solutions to these shape equations correspond to a three-dimensional version of Mathisson's helical motions for the centers of mass of spinning probes. Thereafter, we focus on the case of maximally symmetric spaces, where solutions correspond to cylindrical helices and find that the Lancret ratio of these equals the relative speed between the Mathisson-Pirani and the Tulczyjew-Dixon observers. Finally, we construct all possible helical motions in three-dimensional manifolds with constant negative curvature. In particular, we discover a rich space of helices in AdS3_3 which we explore in detail.Comment: 28 pages, 5 figure

    Accurate computation of surface stresses and forces with immersed boundary methods

    Get PDF
    Many immersed boundary methods solve for surface stresses that impose the velocity boundary conditions on an immersed body. These surface stresses may contain spurious oscillations that make them ill-suited for representing the physical surface stresses on the body. Moreover, these inaccurate stresses often lead to unphysical oscillations in the history of integrated surface forces such as the coefficient of lift. While the errors in the surface stresses and forces do not necessarily affect the convergence of the velocity field, it is desirable, especially in fluid-structure interaction problems, to obtain smooth and convergent stress distributions on the surface. To this end, we show that the equation for the surface stresses is an integral equation of the first kind whose ill-posedness is the source of spurious oscillations in the stresses. We also demonstrate that for sufficiently smooth delta functions, the oscillations may be filtered out to obtain physically accurate surface stresses. The filtering is applied as a post-processing procedure, so that the convergence of the velocity field is unaffected. We demonstrate the efficacy of the method by computing stresses and forces that converge to the physical stresses and forces for several test problems
    corecore