111 research outputs found

    Emergence of District-Heating Networks; Barriers and Enablers in the Development Process

    Get PDF
    Infrastructure provision business models that promise resource efficiencies and additional benefits, such as job creation, community cohesion and crime reduction exist at sub-national scales. These local business models, however, exist only as isolated cases of good practice and their expansion and wider adoption has been limited in the context of many centralised systems that are currently the norm. In this contribution, we present a conceptual agent based model for analysing the potential for different actors to implement local infrastructure provision business models. The model is based on agents’ ability to overcome barriers that occur throughout the development (i.e. feasibility, business case, procurement, and construction), and operation and maintenance of alternative business models. This presents a novel approach insofar as previous models have concentrated on the acceptance of alternative value provision models rather than the emergence of underlying business models. We implement the model for the case study of district heating networks in the UK, which have the potential to significantly contribute to carbon emission reductions, but remain under-developed compared with other European countries

    An Agent Operationalization Approach for Context Specific Agent-Based Modeling

    Get PDF
    The potential of agent-based modeling (ABM) has been demonstrated in various research fields. However, three major concerns limit the full exploitation of ABM; (i) agents are too simple and behave unrealistically without any empirical basis, (ii) \'proof of concept\' applications are too theoretical and (iii) too much value placed on operational validity instead of conceptual validity. This paper presents an operationalization approach to determine the key system agents, their interaction, decision-making and behavior for context specific ABM, thus addressing the above-mentioned shortcomings. The approach is embedded in the framework of Giddens\' structuration theory and the structural agent analysis (SAA). The agents\' individual decision-making (i.e. reflected decisions) is operationalized by adapting the analytical hierarchy process (AHP). The approach is supported by empirical system knowledge, allowing us to test empirically the presumed decision-making and behavioral assumptions. The output is an array of sample agents with realistic (i.e. empirically quantified) decision-making and behavior. Results from a Swiss mineral construction material case study illustrate the information which can be derived by applying the proposed approach and demonstrate its practicability for context specific agent-based model development.Agent Operationalization, Decision-Making, Analytical Hierarchy Process (AHP), Agent-Based Modeling, Conceptual Validation

    Comparative LCA of recycled and conventional concrete for structural applications

    Get PDF
    Purpose: Construction and demolition (C&D) waste recycling has been considered to be a valuable option not only for minimising C&D waste streams to landfills but also for mitigating primary mineral resource depletion. However, the potentially higher cement demand due to the larger surface of the coarse recycled aggregates challenges the environmental benefits of recycling concrete. Furthermore, it is unclear how the environmental impacts depend on concrete mixture, cement type, aggregates composition and transport distances. Methods: We therefore analysed the life cycle impacts of 12 recycled concrete (RC) mixtures with two different cement types and compared it with corresponding conventional concretes (CC) for three structural applications. The RC mixtures were selected according to laws, standards and construction practice in Switzerland. We compared the environmental impacts of ready-for-use concrete on the construction site, assuming equal lifetimes for recycled and conventional concrete in a full life cycle assessment. System expansion and substitution are considered to achieve the same functionality for all systems. Results and discussion: The results show clear (∼30%) environmental benefits for all RC options at endpoint level (ecoindicator 99 and ecological scarcity). The difference is mainly due to the avoided burdens associated to reinforcing steel recycling and avoided disposal of C&D waste. Regarding global warming potential (GWP), the results are more balanced and primarily depend on the additional amount of cement needed for RC. Above 22 to 40kg additional cement per cubic metre of concrete, RC exhibits a GWP comparable to CC. Additional transport distances above 15km for the RC options do result in environmental impacts higher than those for CC. Conclusions: In summary, the current market mixtures of recycled concrete in Switzerland show significant environmental benefits compared to conventional concrete and cause similar GWP, if additional cement and transport for RC are limite

    Generic bottom-up building-energy models for developing regional energy transition scenarios

    Get PDF
    Energy demand from buildings has the largest single share of the global final energy demand, but offers massive energy saving potentials through state-of-the-art technologies and behavioural changes. However, the required speed of technology adoption and behavioural changes to achieve such savings are largely uncertain and embedded in complex socio-technical system. Successful examples of achieving such systemic transition in the energy system are mostly found on the regional scale. Therefore a transition from the existing conventional centralized and mainly fossil fuelbased energy infrastructure towards a decentralized and renewable-based energy infrastructure is required. This research presents a generic bottom-up building-energy model for developing regional energy scenarios. Besides the development of regional scenarios, this model allows for analysing various detailed aspects of buildings' energy demand, such as retrofitting behaviour, technology adoption, and occupancy behaviour with agent-based modelling extensions

    Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches.

    Get PDF
    Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies

    Agent-based modelling of agricultural water abstraction in response to climate change and policies: In East Anglia, UK

    Get PDF
    Freshwater is a vital natural resource for multiple sectors. However, freshwater available for abstraction in the UK and in particular agricultural irrigation in East Anglia is becoming increasingly variable and uncertain due to climate and policy changes, and increase in demand. We present an Agent-Based Model (ABM) that has the capability to capture the complexity of this system as individual abstractors interact, learn and adapt to internal and external changes. The purpose of this model is to understand under which policy and climate change scenarios sustainable water resource management emerges from decisions and interactions of water abstraction licence holders. This poster will present the conceptual model and preliminary results

    Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks

    Get PDF
    The potential contribution of local energy infrastructure – such as heat networks – to the transition to a low carbon economy is increasingly recognised in international, national and municipal policy. Creating the policy environment to foster the scaling up of local energy infrastructure is, however, still challenging; despite national policy action and local authority interest the growth of heat networks in UK cities remains slow. Technoeconomic energy system models commonly used to inform policy are not designed to address institutional and governance barriers. We present an agent-based model of heat network development in UK cities in which policy interventions aimed at the institutional and governance barriers faced by diverse actors can be explored. Three types of project instigators are included – municipal, commercial and community – which have distinct decision heuristics and capabilities and follow a multi-stage development process. Scenarios of policy interventions developed in a companion modelling approach indicate that the effect of interventions differs between actors depending on their capabilities. Successful interventions account for the specific motivations and capabilities of different actors, provide a portfolio of support along the development process and recognise the important strategic role of local authorities in supporting low carbon energy infrastructure

    Enhancing recycling of construction materials: An agent based model with empirically based decision parameters

    Get PDF
    Recycling of construction material is a valuable option for minimizing construction & demolition waste streams to landfills and mitigating primary mineral resource depletion. Material flows in the construction sector are governed by a complex socio-technical system in which awarding authorities decide in interaction with other actors on the use of construction materials. Currently, construction & demolition waste is still mainly deposited in landfills, as construction actors lack the necessary information and training regarding the use of recycled materials, and as a result have low levels of acceptance for them. This paper presents an agent-based model of the Swiss recycled construction material market based on empirical data derived from the agent operationalization approach. It elaborates on how recycling of construction materials can be enhanced by analysing key factors affecting the demand for recycled construction materials and developing scenarios towards a sustainable construction waste management. Doing so it demonstrates how detailed empirical agent decision data were incrementally included in the ABM model. Raising construction actors' awareness of recycled materials as a decision option, in combination with small price incentives was most effective for enhancing the use of recycled materials. This could lead to a 50% reduction of construction & demolition waste streams to landfills, and significantly reduce the environmental impacts related to concrete applications. From a methodological perspective, although the agent operationalization approach provides a large empirical foundation, incremental model development turned out to be particularly important for the traceability of results and a realistic system representation

    Gross polluters for food shopping travel: an activity-based typology

    Get PDF
    To address the failure of sustainable transport policies to bring about significant change, researchers have proposed to 'tame the few', targeting the minority sectors of the population responsible for a disproportionate amount of emissions. At the same time, activity- and practice-based approaches are increasingly proposed as the way forward for transport and energy research. In this article, we develop an approach inspired by both developments, by focusing on the car- and carbon-intensive food shopping practices of the 20% of households with the longest car travel distance as recorded in the National Travel Survey of Great Britain (NTS 2002-2010) for this activity. We present a four-cluster typology of gross polluters, highlighting the crucial role of frequency and the existence of a small but growing group of low-income, older households with ‘shopping intensive’ travel patterns. These results suggest that, while the households with the worst climate impact have a distinct socio-demographic profile, broader sections of the population are recruited into gross polluting patterns of food shopping travel. Also, while built environment policies remain key, significantly reducing transport emissions in this area requires a broader approach, taking into account the relationships between food shopping and eating practices

    Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-013-0614-0Purpose Blended cements use waste products to replace Portland cement, the main contributor to CO2 emissions in concrete manufacture. Using blended cements reduces the embodied greenhouse gas emissions; however, little attention has been paid to the reduction in CO2 capture (carbonation) and durability. The aim of this study is to determine if the reduction in production emissions of blended cements compensates for the reduced durability and CO2 capture. Methods This study evaluates CO2 emissions and CO2 capture for a reinforced concrete column during its service life and after demolition and reuse as gravel filling material. Concrete depletion, due to carbonation and the unavoidable steel embedded corrosion, is studied, as this process consequently ends the concrete service life. Carbonation deepens progressively during service life and captures CO2 even after demolition due to the greater exposed surface area. In this study, results are presented as a function of cement replaced by fly ash (FA) and blast furnace slag (BFS). Results and discussion Concrete made with Portland cement, FA (35%FA), and BFS blended cements (80%BFS) captures 47, 41, and 20 % of CO2 emissions, respectively. The service life of blended cements with high amounts of cement replacement, like CEM III/A (50 % BFS), CEM III/B (80 % BFS), and CEMII/B-V (35%FA), was about 10%shorter, given the higher carbonation rate coefficient. Compared to Portland cement and despite the reduced CO2 capture and service life, CEM III/B emitted 20 % less CO2 per year. Conclusions To obtain reliable results in a life cycle assessment, it is crucial to consider carbonation during use and after demolition. Replacing Portland cement with FA, instead of BFS, leads to a lower material emission factor, since FA needs less processing after being collected, and transport distances are usually shorter. However, greater reductions were achieved using BFS, since a larger amount of cement can be replaced. Blended cements emit less CO2 per year during the life cycle of a structure, although a high cement replacement reduces the service life notably. If the demolished concrete is crushed and recycled as gravel filling material, carbonation can cut CO2 emissions by half. A case study is presented in this paper demonstrating how the results may be utilized.This research was financially supported by the Spanish Ministry of Science and Innovation (research project BIA2011-23602). The authors thank the anonymous reviewers for their constructive comments and useful suggestions. The authors are also grateful for the thorough revision of the manuscript by Dr. Debra Westall.García Segura, T.; Yepes Piqueras, V.; Alcalá González, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment. 19(1):3-12. https://doi.org/10.1007/s11367-013-0614-0S312191Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359Angst U, Elsener B, Larsen C (2009) Critical chloride content in reinforced concrete—a review. Cement Concr Res 39(12):1122–1138Berge B (2000) The ecology of building materials. Architectural Press, OxfordBertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of Steel in Concrete—Prevention Diagnosis. Repair, Wiley-VCH, WeinheimBörjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life cycle and forest land-use perspectives. Energy Policy 28(9):575–588Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-crunch algorithm. Eng Struct 48:363–372CEN (2011) EN 197–1: Cement. Part 1: Composition, specifications and conformity criteria for common cements. European Committee for Standardization, BrusselsCIWMB (2000) Designing with vision: a technical manual for materials choices in sustainable construction. California Integrated Waste Management Board, SacramentoCollins F (2010) Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int J Life Cycle Assess 15(6):549–556Database BEDEC (2012) Institute of Construction Technology of Catalonia. Barcelona, SpainDodoo A, Gustavsson L, Sathre R (2009) Carbon implications of end-of-life management of building materials. Resour Conserv Recy 53(5):276–286ECO-SERVE Network Cluster 3 (2004) Baseline Report for the Aggregate and Concrete Industries in Europe. European Commission, Hellerup: http://www.eco-serve.net/uploads/479998_baseline_report_final.pdf , accessed 10 September 2012European Federation of Concrete Admixtures Associations (2006) Environmental Product Declaration (EPD) for Normal Plasticizing admixtures. Environmental Consultant, Sittard: http://www.efca.info/downloads/324%20ETG%20Plasticiser%20EPD.pdf , accessed 13 October 2012Galán I (2011) Carbonatación del hormigón: combinación de CO2. Dissertation, Universidad Complutense de Madrid, SpainGalán I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44(8):3181–3186Flower DJM, Sanjayan JG (2007) Greenhouse gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288Guzmán S, Gálvez JC, Sancho JM (2011) Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement Concr Res 41(8):893–902Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. C Cement Concr Res 32(12):1923–1930Institute for Diversification and Energy Saving (2010) Conversion factors of primary energy and CO2 emissions of 2010. M. Industria, Energía y Turismo, Madrid, Spain: http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Factores_Conversion_Energia_y_CO2_2010_0a9cb734.pdf , accessed 10 September 2012ISO (2005) ISO/TC 71—Business plan. Concrete, reinforced concrete and prestressed concrete. International Organization for Standardization (ISO), Geneva, SwitzerlandISO (2006) ISO 14040: Environmental management—life-cycle assessment—principles and framework. International Organization for Standardization, Geneva, SwitzerlandJiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high-volume fly ash concrete. Cement Concr Res 30(5):699–702Jönsson A, Björklund T, Tillman AM (1988) LCA of concrete and steel building frames. Int J Life Cycle Assess 3(4):216–224Knoeri C, Sanyé-Mengual E, Althaus HJ (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918Lagerblad B (2005) Carbon dioxide uptake during concrete life-cycle: State of the art. Swedish Cement and Concrete Research Institute, StockholmLeber I, Blakey FA (1956) Some effects of carbon dioxide on mortars and concrete. J Am Concr Inst 53:295–308Fomento M (2008) EHE-08; Code of Structural Concrete. M. Fomento, Madrid, SpainMarinkovic S, Radonjanin V, Malešev M, Ignjatovic I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag 30(11):2255–2264Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A 13(6):420–432O’Brien KR, Ménaché J, O’Moore LM (2009) Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int J Life-cycle Assess 14(7):621–629Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100-year perspective. Cem Concr Res 37(9):1384–1356Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 88(4):363–373Payá I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building by simulated annealing. Comput-Aided Civ Inf 23(8):596–610Payá-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-efficient design of reinforced concrete building frames. Eng Struct 31(7):1501–1508Saassouh B, Lounis Z (2012) Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods. Cement Concrete Comp 34(9):1082–1093The Concrete Centre (2009) The Concrete Industry Sustainability Performance Report. The Concrete Center, Camberley: http://www.admixtures.org.uk/downloads/Concrete%20Industry%20Sustainable%20Performance%20Report%202009.pdf , accessed 9 September 2012Tuutti K (1982) Corrosion of steel in Concrete. CBI Forskning Research Report, Swedish Cem Concr Res Inst. Stockholm, SwedenWeil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manage Res 24(3):197–206World Steel Association (2010) Fact sheet: the three Rs of sustainable Steel. World Steel Association, Brussels: http://www.steel.org/Sustainability/~/media/Files/SMDI/Sustainability/3rs.ashx , accessed 15 September 2012Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386Yiwei T, Qun Z, Jian G (2011) Study on the Life-cycle Carbon Emission and Energy-efficiency Management of the Large-scale Public Buildings in Hangzho. China. International Conference on Computer and Management, Wuhan, pp 546–552Zornoza E, Payá J, Monzó J, Borrachero MV, Garcés P (2009) The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Const Build Mater 23(3):1323–132
    corecore