46 research outputs found

    Cardiorespiratory effects of venous lipid micro embolization in an experimental model of mediastinal shed blood reinfusion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retransfusion of the patient's own blood during surgery is used to reduce the need for allogenic blood transfusion. It has however been found that this blood contains lipid particles, which form emboli in different organs if the blood is retransfused on the arterial side. In this study, we tested whether retransfusion of blood containing lipid micro-particles on the venous side in a porcine model will give hemodynamic effects.</p> <p>Methods</p> <p>Seven adult pigs were used. A shed blood surrogate containing 400 ml diluted blood and 5 ml radioactive triolein was produced to generate a lipid embolic load. The shed blood surrogate was rapidly (<2 minutes) retransfused from a transfusion bag to the right atrium under general anesthesia. The animals' arterial, pulmonary, right and left atrial pressure were monitored, together with cardiac output and deadspace. At the end of the experiment, an increase in cardiac output and pulmonary pressure was pharmacologically induced to try to flush out lipid particles from the lungs.</p> <p>Results</p> <p>A more than 30-fold increase in pulmonary vascular resistance was observed, with subsequent increase in pulmonary artery pressure, and decrease in cardiac output and arterial pressure. This response was transient, but was followed by a smaller, persistent increase in pulmonary vascular resistance. Only a small portion of the infused triolein passed the lungs, and only a small fraction could be recirculated by increasing cardiac output and pulmonary pressure.</p> <p>Conclusion</p> <p>Infusion of blood containing lipid micro-emboli on the venous side leads to acute, severe hemodynamic responses that can be life threatening. Lipid particles will be trapped in the lungs, leading to persistent effects on the pulmonary vascular resistance.</p

    Host Genetic Factors and Vaccine-Induced Immunity to Hepatitis B Virus Infection

    Get PDF
    BACKGROUND: Vaccination against hepatitis B virus infection (HBV) is safe and effective; however, vaccine-induced antibody level wanes over time. Peak vaccine-induced anti-HBs level is directly related to antibody decay, as well as risk of infection and persistent carriage despite vaccination. We investigated the role of host genetic factors in long-term immunity against HBV infection based on peak anti-HBs level and seroconversion to anti-HBc. METHODS: We analyzed 715 SNP across 133 candidate genes in 662 infant vaccinees from The Gambia, assessing peak vaccine-induced anti-HBs level and core antibody (anti-HBc) status, whilst adjusting for covariates. A replication study comprised 43 SNPs in a further 393 individuals. RESULTS: In our initial screen we found variation in IFNG, MAPK8, and IL10RA to affect peak anti-HBs level (GMTratio of 1.5 and P < or = 0.001) and lesser associations in other genes. Odds of core-conversion was associated with variation in CD163. A coding change in ITGAL (R719V) with likely functional relevance showed evidence of association with increased peak anti-HBs level in both screens (1st screen: s595_22 GMTratio 1.71, P = 0.013; 2nd screen: s595_22 GMTratio 2.15, P = 0.011). CONCLUSION: This is to our knowledge the largest study to date assessing genetic determinants of HBV vaccine-induced immunity. We report on associations with anti-HBs level, which is directly related to durability of antibody level and predictive of vaccine efficacy long-term. A coding change in ITGAL, which plays a central role in immune cell interaction, was shown to exert beneficial effects on induction of peak antibody level in response to HBV vaccination. Variation in this gene does not appear to have been studied in relation to immune responses to viral or vaccine challenges previously. Our findings suggest that genetic variation in loci other than the HLA region affect immunity induced by HBV vaccination

    A Genome-Wide Association Study Identifies rs2000999 as a Strong Genetic Determinant of Circulating Haptoglobin Levels

    Get PDF
    Haptoglobin is an acute phase inflammatory marker. Its main function is to bind hemoglobin released from erythrocytes to aid its elimination, and thereby haptoglobin prevents the generation of reactive oxygen species in the blood. Haptoglobin levels have been repeatedly associated with a variety of inflammation-linked infectious and non-infectious diseases, including malaria, tuberculosis, human immunodeficiency virus, hepatitis C, diabetes, carotid atherosclerosis, and acute myocardial infarction. However, a comprehensive genetic assessment of the inter-individual variability of circulating haptoglobin levels has not been conducted so far

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/
    corecore