333 research outputs found

    Inundation of Stormwater Infrastructure Is Common and Increases Risk of Flooding in Coastal Urban Areas Along the US Atlantic Coast

    Get PDF
    Stormwater infrastructure can manage precipitation-driven flooding when there are no obstructions to draining. Coastal areas increasingly experience recurrent flooding due to elevated water levels from storms or tides, but the inundation of coastal stormwater infrastructure by elevated water levels has not been broadly assessed. We conservatively estimated stormwater infrastructure inundation in municipalities along the Atlantic United States coast by using areas of high-tide flooding (HTF) on roads as a proxy. We also modeled stormwater infrastructure inundation in four North Carolina municipalities and measured infrastructure inundation in one of the modeled municipalities. Combining methodologies at different scales provides context and allows the scope of stormwater infrastructure inundation to be broadly estimated. We found 137 census-designated urban areas along the Atlantic coast with road area impacted by HTF, with a median percent of total road area subject to HTF of 0.16% (IQR: 0.02%–0.53%). Based on 2010 census block data, the median number of people per urban area that live in census blocks with HTF on roads was 1,622 (IQR: 366–5,779). In total, we estimate that over 2 million people live in census blocks where HTF occurs on roadways along the US Atlantic coast. Modeling results and water level measurements indicated that extensive inundation of underground stormwater infrastructure likely occurs at water levels within the mean tidal range. These results suggest that stormwater infrastructure inundation along the US Atlantic coast is likely widespread, affects a large number of people, occurs frequently, and increases the occurrence of urban flooding

    Foreground removal from WMAP 7yr polarization maps using an MLP neural network

    Get PDF
    One of the fundamental problems in extracting the cosmic microwave background signal (CMB) from millimeter/submillimeter observations is the pollution by emission from the Milky Way: synchrotron, free-free, and thermal dust emission. To extract the fundamental cosmological parameters from CMB signal, it is mandatory to minimize this pollution since it will create systematic errors in the CMB power spectra. In previous investigations, it has been demonstrated that the neural network method provide high quality CMB maps from temperature data. Here the analysis is extended to polarization maps. As a concrete example, the WMAP 7-year polarization data, the most reliable determination of the polarization properties of the CMB, has been analysed. The analysis has adopted the frequency maps, noise models, window functions and the foreground models as provided by the WMAP Team, and no auxiliary data is included. Within this framework it is demonstrated that the network can extract the CMB polarization signal with no sign of pollution by the polarized foregrounds. The errors in the derived polarization power spectra are improved compared to the errors derived by the WMAP Team.Comment: Accepted for publication in Astrophysics & Space Scienc

    Non-Fermi liquid behavior and scaling of low frequency suppression in optical conductivity spectra of CaRuO3_3

    Full text link
    Optical conductivity spectra σ1(ω)\sigma_1(\omega) of paramagnetic CaRuO3_3 are investigated at various temperatures. At T=10 K, it shows a non-Fermi liquid behavior of σ1(ω)1/ω12\sigma_1(\omega)\sim 1/{\omega}^{\frac 12}, similar to the case of a ferromagnet SrRuO3_3. As the temperature (TT) is increased, on the other hand, σ1(ω)\sigma_1(\omega) in the low frequency region is progressively suppressed, deviating from the 1/{\omega}^{\frac 12%}-dependence. Interestingly, the suppression of σ1(ω)\sigma_1(\omega) is found to scale with ω/T\omega /T at all temperatures. The origin of the % \omega /T scaling behavior coupled with the non-Fermi liquid behavior is discussed.Comment: 4 pages, 3 figure

    Emergence of quasi-metallic state in disordered 2D electron gas due to strong interactions

    Full text link
    The interrelation between disorder and interactions in two dimensional electron liquid is studied beyond weak coupling perturbation theory. Strong repulsion significantly reduces the electronic density of states on the Fermi level. This makes the electron liquid more rigid and strongly suppresses elastic scattering off impurities. As a result the weak localization, although ultimately present at zero temperature and infinite sample size, is unobservable at experimentally accessible temperature at high enough densities. Therefore practically there exists a well defined metallic state. We study diffusion of electrons in this state and find that the diffusion pole is significantly modified due to "mixture" with static photons similar to the Anderson - Higgs mechanism in superconductivity. As a result several effects stemming from the long range nature of diffusion like the Aronov - Altshuler logarithmic corrections to conductivity are less pronounced.Comment: to appear in Phys. Rev.

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87
    corecore