575 research outputs found

    Gambling on Global Catastrophes

    Get PDF
    Despite significant technological and scientific advances, the ability to predict, quantify and prepare for natural catastrophes remains inadequate. While new approaches continue to be developed by a sophisticated insurance industry, they have not extended to a developing world largely unprepared for catastrophe and dependent on little more than divine providence

    Designing of sampling programmes for industrial effluent monitoring

    Get PDF
    Monitoring of effluent discharges from industrial establishments discharging directly into municipality sewers is one of the major water pollution control activities conducted by municipalities. For largely industrialised municipalities the task can be quite expensive and not effective if sampling programmes are not properly designed. In most cases samples are randomly collected without proper knowledge of the discharge patterns of various industries. As a result the information obtained does not give a good reflection of the quality of effluent being discharged. These problems can be resolved by adapting a statistical approach to the design of sampling programmes. This approach is useful in determining the frequency of sampling, the number of samples needed to estimate the average concentration of target pollution indicator parameters and the magnitude of the uncertainty involved. The benefits and applications of this approach are demonstrated by a case study presented in this paper. It was found that the number of samples and cost of sample analysis can be greatly reduced by the use of systematic instead of random sampling. The statistical approach greatly improves the estimate of monthly means of pollution indicator parameters and is an effective approach for pollution control when coupled with the “polluter pays principle”

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Saethre-Chotzen syndrome : cranofacial anomalies caused by genetic changes in the TWIST gene

    Get PDF
    In this thesis, one of the most frequently occurring and most variable craniosynostosis syndromes was investigated; Saethre-Chotzen syndrome. Craniosynostosis is the premature obliteration of cranial sutures in the developing embryo. It can also occur in the first few months of life. Saethre-Chotzen syndrome is, besides craniosynostosis, characterized by specific facial and limb abnormalities, of which the most frequently reported are ptosis, prominent crus helicis, cutaneous syndactyly of digit 2 and 3 on both hands and feet, and broad halluces. Saethre-Chotzen syndrome has been linked to the TWIST gene on chromosome 7p21.1. Mutations in and variably sized deletions of this gene can be found in patients with clinical features of Saethre-Chotzen syndrome. The latter, TWIST deletions, often also include part of the surrounding chromosome 7p and are reported to be associated with mental retardation. In Saethre-Chotzen patients, in whom neither a mutation nor a deletion of TWIST had been found, the FGFR3 P250R mutation was in some cases detected. This mutation has specifically been linked to Muenke syndrome that is characterized by unior bicoronal synostosis and slight facial dysmorphology. However, a Saethre-Chotzen like phenotype can also result from this mutation. Because of the possible overlap of Saethre-Chotzen with Muenke syndrome, these syndromes were studied in order to provide clinical criteria that discriminate between the two (chapter 4). Many phenotypic features occur in both syndromes. In addition, although unicoronal synostosis occurs slightly more frequently in Muenke syndrome, unicoronal and bicoronal synostosis are seen in both syndromes. The discrimination between Saethre-Chotzen and Muenke is often not made easily and the associated genes, TWIST and FGFR3, respectively, are simultaneously tested for pathogenic m
    corecore