68 research outputs found

    ATLANTIC ‐ PRIMATES : a dataset of communities and occurrences of primates in the Atlantic Forests of South America

    Get PDF
    Primates play an important role in ecosystem functioning and offer critical insights into human evolution, biology, behavior, and emerging infectious diseases. There are 26 primate species in the Atlantic Forests of South America, 19 of them endemic. We compiled a dataset of 5,472 georeferenced locations of 26 native and 1 introduced primate species, as hybrids in the genera Callithrix and Alouatta. The dataset includes 700 primate communities, 8,121 single species occurrences and 714 estimates of primate population sizes, covering most natural forest types of the tropical and subtropical Atlantic Forest of Brazil, Paraguay and Argentina and some other biomes. On average, primate communities of the Atlantic Forest harbor 2 ± 1 species (range = 1–6). However, about 40% of primate communities contain only one species. Alouatta guariba (N = 2,188 records) and Sapajus nigritus (N = 1,127) were the species with the most records. Callicebus barbarabrownae (N = 35), Leontopithecus caissara (N = 38), and Sapajus libidinosus (N = 41) were the species with the least records. Recorded primate densities varied from 0.004 individuals/km2 (Alouatta guariba at Fragmento do Bugre, Paraná, Brazil) to 400 individuals/km2 (Alouatta caraya in Santiago, Rio Grande do Sul, Brazil). Our dataset reflects disparity between the numerous primate census conducted in the Atlantic Forest, in contrast to the scarcity of estimates of population sizes and densities. With these data, researchers can develop different macroecological and regional level studies, focusing on communities, populations, species co‐occurrence and distribution patterns. Moreover, the data can also be used to assess the consequences of fragmentation, defaunation, and disease outbreaks on different ecological processes, such as trophic cascades, species invasion or extinction, and community dynamics. There are no copyright restrictions. Please cite this Data Paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data.Fil: Culot, Laurence. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Pereira, Lucas Augusto. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Agostini, Ilaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; Argentina. Centro de Investigaciones del Bosque Atlántico; ArgentinaFil: de Almeida, Marco Antônio Barreto. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Alves, Rafael Souza Cruz. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Baldovino, María Celia. Centro de Investigaciones del Bosque Atlántico; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Di Bitetti, Mario Santiago. Centro de Investigaciones del Bosque Atlántico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Oklander, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Holzmann, Ingrid. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Dums, Marcos. RUMO S.A. Licenciamento Ambiental; BrasilFil: Lombardi, Pryscilla Moura. RUMO S.A. Licenciamento Ambiental; BrasilFil: Bonikowski, Renata Twardowsky Ramalho. RUMO S.A. Licenciamento Ambiental; BrasilFil: Age, Stéfani Gabrieli. RUMO S.A. Licenciamento Ambiental; BrasilFil: Souza Alves, João Pedro. Universidade Federal de Pernambuco; BrasilFil: Chagas, Renata. Universidade Federal da Paraíba; BrasilFil: da Cunha, Rogério Grassetto Teixeira. Universidade Federal de Alfenas; BrasilFil: Valença Montenegro, Monica Mafra. Centro Nacional de Pesquisa e Conservaçao de Primates Brasileiros; BrasilFil: Ludwig, Gabriela. Centro Nacional de Pesquisa e Conservaçao de Primates Brasileiros; BrasilFil: Jerusalinsky, Leandro. Centro Nacional de Pesquisa e Conservaçao de Primates Brasileiros; BrasilFil: Buss, Gerson. Centro Nacional de Pesquisa e Conservaçao de Primates Brasileiros; BrasilFil: de Azevedo, Renata Bocorny. Centro Nacional de Pesquisa e Conservaçao de Primates Brasileiros; BrasilFil: Filho, Roberio Freire. Universidade Federal de Pernambuco; BrasilFil: Bufalo, Felipe. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Milhe, Louis. Université D'Avignon et des Pays du Vaucluse; FranciaFil: Santos, Mayara Mulato dos. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Sepulvida, Raíssa. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Ferraz, Daniel da Silva. Universidade do Estado de Minas Gerais; BrasilFil: Faria, Michel Barros. Universidade do Estado de Minas Gerais; BrasilFil: Ribeiro, Milton Cezar. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Galetti, Mauro. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi

    Discourse Analysis and Terminology in Languages for Specific Purposes

    Get PDF
    Aquest importantíssim recull conté estudis i reflexions sobre temes rellevants en la recerca sobre LSP: anglès mèdic, el llenguatge de la publicitat i periodístic, telecomunicacions i terminologia informàtica, llenguatge comercial i jurídic... Malgrat que gran part dels treballs aplegats es refereixen a l'anglès, també hi ha que tracten l'alemany, francès i altres llengües. Conté textos en anglès, francés, portuguès i castellà

    Bullying escolar: um fenômeno multifacetado

    Get PDF
    School bullying can involve children in different ways, making them play different roles, among them, victims, bullies and bully-victims. The aim of this study was to describe how bullying occurs in high social vulnerability schools of Florianópolis metropolitan area and the roles played by students in this phenomenon. Overall, 409 children and adolescents from the 3rd to 5th grades and of two public elementary schools aged 8-16 years (X = 11.14) participated in this study. As a tool, the Olweus Questionnaire adapted to the Brazilian population was used. For data analysis, descriptive statistics and inferential statistics were applied by the Mann Whitney and Kruskal Wallis tests. As for results, 29.8% of boys and 40.5% of girls reported being victims; 32.3% of boys and 24.6% of girls reported being bullies. Victims were the most willing to help a colleague who is suffering from bullying (X = 1.54; p> 0.001), even if they do not know the victims (X = 1.57; p> 0.004). Bullies are differentiated from the group that does not participate (X = 1.73) and the group of victims (X = 2.34), being those who felt less alone (x = 1.47; p> 0.001). It was concluded that the information obtained in this study is indispensable in the search for alternatives to reduce school bullying. The strengthening of relations between school and students and a better preparation of teachers and school staff are extremely necessary to try to minimize the effects of risk factors to which these children are exposed and consequently violence at school.O bullying escolar pode envolver crianças de diferentes maneiras, fazendo com que essas assumam papéis diferenciados. Dentre estes, têm-se vítimas, agressores e vítimas-agressoras. O objetivo deste estudo foi descrever como ocorre o bullying em escolas de alta vulnerabilidade social da Grande Florianópolis e os papéis assumidos pelos alunos nesse fenômeno. Quanto ao método, participaram 409 crianças e adolescentes do terceiro ao quinto ano e da quarta à sexta série do ensino fundamental, de duas escolas públicas municipais, com idades entre 8 e 16 anos (X=11,14). Como instrumento, utilizou-se o Questionário de Olweus adaptado à população brasileira. Para a análise dos dados, empregaram-se a estatística descritiva e estatística inferencial por meio dos testes Mann Whitney e Kruskal Wallis. Quanto aos resultados, 29,8% dos meninos e 40,5% das meninas relataram terem sido vítimas; já 32,3% dos meninos e 24,6% das meninas relataram terem sido agressores. As vítimas foram as que se mostraram mais dispostas a ajudar como podem um colega que esteja sofrendo agressão (X=1,54; p>0,001), mesmo que não o conheçam (X=1,57; p>0,004). Em contrapartida, os agressores se diferenciaram do grupo que não participa (X=1,73) e do grupo das vítimas (X=2,34), sendo aqueles que menos se sentiram sozinhos (X=1,47; p>0,001). Concluiu-se que as informações obtidas neste estudo são indispensáveis na busca de alternativas para redução do bullying escolar. O fortalecimento das relações entre escola e alunos, e um maior preparo dos professores e funcionários são extremamente necessários para tentar minimizar os efeitos dos fatores de risco a que essas crianças estão expostas e consequentemente a violência na escola.CAPES - Proc. nº 0815/14-4CIEC - Centro de Investigação em Estudos da Criança, IE, UMinho (UI 317 da FCT)Projeto Estratégico da FCT: UID/CED/00317/201

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    Get PDF
    © The Author(s) 2018. Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    Brazilian cave heritage under siege

    Get PDF
    info:eu-repo/semantics/publishe

    ATLANTIC-PRIMATES: a dataset of communities and occurrences of primates in the Atlantic Forests of South America

    Get PDF
    Primates play an important role in ecosystem functioning and offer critical insights into human evolution, biology, behavior, and emerging infectious diseases. There are 26 primate species in the Atlantic Forests of South America, 19 of them endemic. We compiled a dataset of 5,472 georeferenced locations of 26 native and 1 introduced primate species, as hybrids in the genera Callithrix and Alouatta. The dataset includes 700 primate communities, 8,121 single species occurrences and 714 estimates of primate population sizes, covering most natural forest types of the tropical and subtropical Atlantic Forest of Brazil, Paraguay and Argentina and some other biomes. On average, primate communities of the Atlantic Forest harbor 2 ± 1 species (range = 1–6). However, about 40% of primate communities contain only one species. Alouatta guariba (N = 2,188 records) and Sapajus nigritus (N = 1,127) were the species with the most records. Callicebus barbarabrownae (N = 35), Leontopithecus caissara (N = 38), and Sapajus libidinosus (N = 41) were the species with the least records. Recorded primate densities varied from 0.004 individuals/km 2 (Alouatta guariba at Fragmento do Bugre, Paraná, Brazil) to 400 individuals/km 2 (Alouatta caraya in Santiago, Rio Grande do Sul, Brazil). Our dataset reflects disparity between the numerous primate census conducted in the Atlantic Forest, in contrast to the scarcity of estimates of population sizes and densities. With these data, researchers can develop different macroecological and regional level studies, focusing on communities, populations, species co-occurrence and distribution patterns. Moreover, the data can also be used to assess the consequences of fragmentation, defaunation, and disease outbreaks on different ecological processes, such as trophic cascades, species invasion or extinction, and community dynamics. There are no copyright restrictions. Please cite this Data Paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data. © 2018 by the The Authors. Ecology © 2018 The Ecological Society of Americ

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore