84 research outputs found
Interaction of vortices in viscous planar flows
We consider the inviscid limit for the two-dimensional incompressible
Navier-Stokes equation in the particular case where the initial flow is a
finite collection of point vortices. We suppose that the initial positions and
the circulations of the vortices do not depend on the viscosity parameter \nu,
and we choose a time T > 0 such that the Helmholtz-Kirchhoff point vortex
system is well-posed on the interval [0,T]. Under these assumptions, we prove
that the solution of the Navier-Stokes equation converges, as \nu -> 0, to a
superposition of Lamb-Oseen vortices whose centers evolve according to a
viscous regularization of the point vortex system. Convergence holds uniformly
in time, in a strong topology which allows to give an accurate description of
the asymptotic profile of each individual vortex. In particular, we compute to
leading order the deformations of the vortices due to mutual interactions. This
allows to estimate the self-interactions, which play an important role in the
convergence proof.Comment: 39 pages, 1 figur
Universality and scaling study of the critical behavior of the two-dimensional Blume-Capel model in short-time dynamics
In this paper we study the short-time behavior of the Blume-Capel model at
the tricritical point as well as along the second order critical line. Dynamic
and static exponents are estimated by exploring scaling relations for the
magnetization and its moments at early stage of the dynamic evolution. Our
estimates for the dynamic exponents, at the tricritical point, are and .Comment: 12 pages, 9 figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Scaling and universality in the phase diagram of the 2D Blume-Capel model
We review the pertinent features of the phase diagram of the zero-field
Blume-Capel model, focusing on the aspects of transition order, finite-size
scaling and universality. In particular, we employ a range of Monte Carlo
simulation methods to study the 2D spin-1 Blume-Capel model on the square
lattice to investigate the behavior in the vicinity of the first-order and
second-order regimes of the ferromagnet-paramagnet phase boundary,
respectively. To achieve high-precision results, we utilize a combination of
(i) a parallel version of the multicanonical algorithm and (ii) a hybrid
updating scheme combining Metropolis and generalized Wolff cluster moves. These
techniques are combined to study for the first time the correlation length of
the model, using its scaling in the regime of second-order transitions to
illustrate universality through the observed identity of the limiting value of
with the exactly known result for the Ising universality class.Comment: 16 pages, 7 figures, 1 table, submitted to Eur. Phys. J. Special
Topic
Current status of the multinational Arabidopsis community
The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the “fourth decadal roadmap,” which will advise and coordinate the global activities of the Arabidopsis research community
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Phytochrome assembly. The structure and biological activity of 2(R),3(E)-phytochromobilin derived from phycobiliproteins.
The unicellular rhodophyte, Porphyridium cruentum, and the filamentous cyanobacterium, Calothrix sp. PCC 7601, contain phycobiliproteins that have covalently bound phycobilin chromophores. Overnight incubation of solvent-extracted cells at 40 degrees C with methanol liberates free phycobilins that are derived from the protein-bound bilins by methanolytic cleavage of the thioether linkages between bilin and apoprotein. Two of the free bilins were identified as 3(E)-phycocyanobilin and 3(E)-phycoerythrombilin by comparative spectrophotometry and high pressure liquid chromatography. Methanolysis also yields a third bilin free acid whose absorption and 1H NMR spectra support the assignment of the 3(E)-phytochromobilin structure. This novel bilin is the major pigment isolated from cells that are pre-extracted with acetone-containing solvents. Since phytochrome- or phytochromobilin-containing proteins are not present in either organism, the 3(E)-phytochromobilin must arise by oxidation of phycobilin chromophores. This pigment is not obtained by similar treatment of a cyanobacterium and a rhodophyte that lack phycoerythrin. Therefore, 3(E)-phytochromobilin appears to be derived from phycoerythrobilin-containing proteins. Comparative CD spectroscopy of 3(E)-phytochrombilin and 3(E)-phycocyanobilin suggests that the two bilins share the R stereochemistry at the 2-position in the reduced pyrrole ring. Incubation of 2(R),3(E)-phytochromobilin with recombinant oat apophytochrome yields a covalent bilin adduct that is photoactive and spectrally indistinguishable from native oat phytochrome isolated from etiolated seedlings. These results establish that the phycobiliprotein-derived 2(R),3(E)-phytochromobilin is a biologically active phytochrome chromophore precursor
Spectroscopic evidence for the adsorption of propene on gold nanoparticles Spectroscopic evidence for the adsorption of propene on gold nanoparticles
The adsorption of propene on supported gold nanoparticles has been experimentally identified as a reaction step in the hydro-epoxidation of propene. This new finding was made possible by applying a detailed analysis of in situ measured XANES spectra. For this purpose, gold-on-silica catalysts were investigated since this support is more inert and propene is not converted. Propene adsorption was investigated by using the hydrogen oxidation as probe reaction. It was shown that co-feeding of propene dramatically decreased the hydrogen oxidation rate. Since it has been reported in the literature that the hydrogen oxidation occurs exclusively over gold nanoparticles, this inhibition by propene can be attributed to adsorption of propene on the gold nanoparticles. Delta-mu analysis of the in situ XANES spectra confirmed the adsorption of propene on the gold and the mode of adsorption was determined to be π-bonding. Comparative experiments with ethene and propane confirmed this π-bonded adsorption, since ethene similarly inhibited the hydrogen oxidation, while propane had only a minor effect. The direct observation of the adsorption of propene on gold nanoparticles corroborates our recent findings, in which we have shown that gold nanoparticles were activating propene to reactively adsorb on titania producing a bidentate propoxy species
- …