65 research outputs found

    Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths

    Get PDF
    We discuss the possibility to realize sharp Fano scattering signatures in the ultraviolet (UV) range, based on dipolar scattering of nanoparticles. At these frequencies, material losses usually do not allow sharp resonant effects, hindering plasmonic applications based on higher-order multipolar modes, like conventional Fano resonances. We propose to excite degenerate scattering states supported by core-shell nanoparticles made of a sapphire core and an aluminum shell. We predict enhanced, highly confined fields, supporting sharp far-field scattering signatures from single nanoparticles and planar arrays of them. These results may lead to the design of UV filters, photodetectors, sensors, and energy-harvesting devices

    Boosting Optical Nonlinearities in Є-Near-Zero Plasmonic Channels

    Get PDF
    The anomalous transmission properties of zero-permittivity ultranarrow channels are used to boost Kerr nonlinearities and achieve switching and bistable response for moderate optical intensities. Strong field enhancement, uniform all along the channel, is a typical feature of ε-near-zero supercoupling and is shown to be particularly suited to enhance nonlinear effects. This is obtained by designing narrow apertures at cutoff in a plasmonic screen. We show that this nonlinear mechanism can significantly outperform nonlinearities in traditional Fabry-Pérot resonant gratings

    Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching

    Get PDF
    Here we extend the reach of Fano resonant coupling by combining this concept with cloaking and plasmonic resonances in a single nonlinear nanoparticle, in order to realize giant all-optical scattering nanoswitches controlled by moderate pumping intensities. We show that a core-shell nonlinear plasmonic particle may be designed to abruptly switch from being completely cloaked to being strongly resonant, with up to a 40 dB cross-sectional difference. Self-tunable optical cloaks and resonant scatterers are envisioned for use as efficient all-optical switches and nanomemories

    Broadband Brewster transmission through 2D metallic gratings

    Get PDF
    Recently, we have introduced a mechanism to achieve ultrabroadband light funnelling and total transmission through 1D narrow metallic gratings at a specific incidence angle, the so-called plasmonic Brewster angle. This phenomenon is based on impedance matching between the guided modes supported by ultranarrow linear slits and transverse-magnetic waves at oblique incidence. In this paper, we demonstrate that such phenomenon, representing the equivalent of Brewster transmission for plasmonic screens, can also occur in 2D metallic gratings of various structural forms and shapes, and that it may be made insensitive to the azimuthal, or polarization, angle u. This finding may have relevant implications to realize large funneling, absorption and squeezing of light in perforated metallic screens

    Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes

    Get PDF
    Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease. Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease. Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes. © 2013 Argyropoulos et al

    VACCELERATE Site Network: Real-time definition of clinical study capacity in Europe

    Get PDF
    Background: The inconsistent European vaccine trial landscape rendered the continent of limited interest for vaccine developers. The VACCELERATE consortium created a network of capable clinical trial sites throughout Europe. VACCELERATE identifies and provides access to state-of-the-art vaccine trial sites to accelerate clinical development of vaccines. Methods: Login details for the VACCELERATE Site Network (vaccelerate.eu/site-network/) questionnaire can be obtained after sending an email to. Interested sites provide basic information, such as contact details, affiliation with infectious disease networks, main area of expertise, previous vaccine trial experience, site infrastructure and preferred vaccine trial settings. In addition, sites can recommend other clinical researchers for registration in the network. If directly requested by a sponsor or sponsor representative, the VACCELERATE Site Network pre-selects vaccine trial sites and shares basic study characteristics provided by the sponsor. Interested sites provide feedback with short surveys and feasibility questionnaires developed by VACCELERATE and are connected with the sponsor to initiate the site selection process. Results: As of April 2023, 481 sites from 39 European countries have registered in the VACCELERATE Site Network. Of these, 137 (28.5 %) sites have previous experience conducting phase I trials, 259 (53.8 %) with phase II, 340 (70.7 %) with phase III, and 205 (42.6 %) with phase IV trials, respectively. Infectious diseases were reported as main area of expertise by 274 sites (57.0 %), followed by any kind of immunosuppression by 141 (29.3 %) sites. Numbers are super additive as sites may report clinical trial experience in several indications. Two hundred and thirty-one (47.0 %) sites have the expertise and capacity to enrol paediatric populations and 391 (79.6 %) adult populations. Since its launch in October 2020, the VACCELERATE Site Network has been used 21 times for academic and industry trials, mostly interventional studies, focusing on different pathogens such as fungi, monkeypox virus, Orthomyxoviridae/influenza viruses, SARS-CoV-2, or Streptococcus pneumoniae/pneumococcus. Conclusions: The VACCELERATE Site Network enables a constantly updated Europe-wide mapping of experienced clinical sites interested in executing vaccine trials. The network is already in use as a rapid-turnaround single contact point for the identification of vaccine trials sites in Europe.The VACCELERATE Site Network has received funding from the European Union’s Horizon 2020 research and innovation pro gramme (grant agreement No 101037867) and the German Federal Ministry of Education and Research (Bundesministerium für Bil dung und Forschung [BMBF]) (grant agreement No BMBF01KX2040).S

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore