235 research outputs found

    Conceptual design and numerical analysis of a novel floating desalination plant powered by marine renewable energy for Egypt

    Get PDF
    The supply of freshwater has become a worldwide interest, due to serious water shortages in many countries. Due to rapid increases in the population, poor water management, and limitations of freshwater resources, Egypt is currently below the water scarcity limit. Since Egypt has approximately 3000 km of coastlines on both the Red Sea and the Mediterranean Sea, seawater desalination powered by marine renewable energy could be a sustainable alternative solution, especially for remote coastal cities which are located far from the national water grid. The objective of this research work is to evaluate the feasibility of a floating desalination plant (FDP) concept powered by marine renewable energy for Egypt. A novel design of the FDP concept is developed as an innovative solution to overcome the freshwater shortage of remote coastal cities in Egypt. A mobile floating platform supported by reverse osmosis (RO) membrane powered by marine renewable power technology is proposed. Based on the abundant solar irradiation and sufficient wind density, Ras Ghareb was selected to be the base site location for the proposed FDP concept. According to the collected data from the selected location, a hybrid solar–wind system was designed to power the FDP concept under a maximum power load condition. A numerical tool, the DNV-GL Sesam software package, was used for static stability, hydrodynamic performance, and dynamic response evaluation. Moreover, WAVE software was used to design and simulate the operation of the RO desalination system and calculate the power consumption for the proposed FDP concept. The results show that the proposed mobile FDP concept is highly suitable for being implemented in remote coastal areas in Egypt, without the need for infrastructure or connection to the national grid for both water and power

    Investment efficiency of floating platforms desalination technology in Egypt

    Get PDF
    Over 2,000 km of sea coasts with different environmental conditions may provide Egypt with alternative energy solution that may be used for electricity production and water desalination, required for the vast urban expansion, mainly along the coastal areas to relieve population pressure from the old valley and delta, and to create new community opportunities in new regions. The proposed platform discussed in this paper is a mobile platform in order to supply any costal city with fresh water to prevent any water crisis. The aim of this research paper is to make an economic comparison between floating stations and fixed stations on the ground and to determine the extent of the preference of one over the other to take the appropriate investment decision that can benefit the vast Egyptian coasts. The result of the study showed the possibility of recovering the invested capital during a period of 5 years and 5 months for the floating platform and 5 years and 8 months for the fixed ground station. Economic indicators have also been used to conduct comparison such as net present value of cash flows, cost-to-cost standard, internal rate of return, sensitivity analysis ([10% cost increase] [10% decrease in revenue] [both together]). All results were positive in favour of the floating platform of the desalination plant

    Numerical hydrodynamics-based design of an offshore platform to support a desalination plant and a wind turbine in Egypt

    Get PDF
    Motivated by soial and environmental reasons, water scarcity has become a global top agenda item. Egypt is one of the countries suffering from an acute shortage of freshwater. A promising novel and efficient solution to overcome Egypt’s freshwater shortage, especially in remote coastal areas far from the national grid of freshwater and electricity, is a mobile floating desalination plant (FDP) powered by offshore renewable energy. The proposed new FDP concept powered by an offshore wind turbine needs a special floating platform to provide enough buoyancy to support the weight of the desalination plant and to restrain the six degrees of freedom motions within an acceptable operational limit for a wind turbine. Based on hydrodynamics, the main objective of this study is to select the suitable offshore platform that can meet the novel FDP concept operation’s requirements at a specific deployment location in Egypt. Determining the safe natural frequencies zone necessitates taking into account the new FDP concept operation constraints and the Egyptian environmental loads to select platform far from the dynamic amplifications responses in the structure. Numerical modelling results show that the cylindrical platform with a heave plate configuration demonstrated the best dynamic and static performance for Egypt

    Environmentally-driven design of a floating desalination platform (Case study: Reverse osmosis floating desalination platform of Ras Gharib, Egypt)

    Get PDF
    Floating desalination plants are fairly new technologies and are not as common as the traditional land-based desalination plants. Almost none of the proposed nor installed projects' designers indicates that the design is environmentally driven, and only few designs are environmentally assessed. This paper aims to highlight the significant role of the environmental practices to achieve a sustainable design, where most of the environmental impact assessment procedures are performed prior to the design phase. Throughout the research, comparing alternatives and analyzing the baseline provided reliable technical help in the tasks of selecting the proposed project's location, desalination technology, power source and platform configuration. Thus, detailed technical descriptions of different systems are presented. Finally, environmental impacts associated with the operation of the proposed floating desalination plant in the selected location are assessed to give guidance on the monitoring and mitigation processes necessary to enhance the process performance, minimize the adverse environmental impacts and ensure the project's sustainability

    Experimental study on the motion response of an integrated floating desalination plant and offshore wind turbine on a non-ship platform

    Get PDF
    An on-grid floating desalination plant (FDP), powered by conventional fossil fuel, was recently proposed to support freshwater demands in some remote coastal cities that have electricity grid networks. The aim of this study is to investigate feasibility of integrating a wind turbine into the same FDP platform to be suitable for off-grid services with sustainable clean energy resources. The new proposed concept is a fully self-contained mobile system powered by wind. Using a 1:100 scale model of the proposed concept, an experimental study was performed to investigate the floater's motion behavior in Egypt. According to historical sea statistical data for Red Sea in Egypt and taking combined dynamic responses of turbine and floating platform into consideration, frequency and time history dynamic analyses have been done. Furthermore, the possibility of using five different wind turbines in the same FDP platform was studied for upgrading purposes. Results show that the proposed FDP concept has capability to support all tested turbines and to operate safely in Egyptian environmental conditions. Based on the FDP concept with and without turbine comparisons, there are minor motion changes in heave responses, while pitch and surge responses show major changes in time history analyses due to turbine operatio

    Effect of mutation and vaccination on spread, severity, and mortality of COVID-19 disease

    Get PDF
    Coronavirus disease 2019 (COVID-19) has had different waves within the same country. The spread rate and severity showed different properties within the COVID-19 different waves. The present work aims to compare the spread and the severity of the different waves using the available data of confirmed COVID-19 cases and death cases. Real-data sets collected from the Johns Hopkins University Center for Systems Science were used to perform a comparative study between COVID-19 different waves in 12 countries with the highest total performed tests for severe acute respiratory syndrome coronavirus 2 detection in the world (Italy, Brazil, Japan, Germany, Spain, India, USA, UAE, Poland, Colombia, Turkey, and Switzerland). The total number of confirmed cases and death cases in different waves of COVID-19 were compared to that of the previous one for equivalent periods. The total number of death cases in each wave was presented as a percentage of the total number of confirmed cases for the same periods. In all the selected 12 countries, Wave 2 had a much higher number of confirmed cases than that in Wave 1. However, the death cases increase was not comparable with that of the confirmed cases to the extent that some countries had lower death cases than in Wave 1, UAE, and Spain. The death cases as a percentage of the total number of confirmed cases in Wave 1 were much higher than that in Wave 2. Some countries have had Waves 3 and 4. Waves 3 and 4 have had lower confirmed cases than Wave 2, however, the death cases were variable in different countries. The death cases in Waves 3 and 4 were similar to or higher than Wave 2 in most countries. Wave 2 of COVID-19 had a much higher spread rate but much lower severity resulting in a lower death rate in Wave 2 compared with that of the first wave. Waves 3 and 4 have had lower confirmed cases than Wave 2; that could be due to the presence of appropriate treatment and vaccination. However, that was not reflected in the death cases, which were similar to or higher than Wave 2 in most countries. Further studies are needed to explain these findings

    Incidence of hip fracture in Saudi Arabia and the development of a FRAX model

    Get PDF
    Summary A prospective hospital-based survey in representative regions of Saudi Arabia determined the incidence of fractures at the hip. The hip fracture rates were used to create a FRAX® model to facilitate fracture risk assessment in Saudi Arabia. Objective This paper describes the incidence of hip fracture in the Kingdom of Saudi Arabia that was used to characterize the current and future burden of hip fracture, to develop a country-specific FRAX® tool for fracture prediction and to compare fracture probabilities with neighbouring countries. Methods During a 2-year (2017/2018) prospective survey in 15 hospitals with a defined catchment population, hip fractures in Saudi citizens were prospectively identified from hospital registers. The number of hip fractures and future burden was determined from national demography. Age- and sex-specific incidence of hip fracture and national mortality rates were incorporated into a FRAX model for Saudi Arabia. Fracture probabilities were compared with those from Kuwait and Abu Dhabi. Results The incidence of hip fracture applied nationally suggested that the estimated number of hip fractures nationwide in persons over the age of 50 years for 2015 was 2,949 and is predicted to increase nearly sevenfold to 20,328 in 2050. Hip fracture rates were comparable with estimates from Abu Dhabi and Kuwait. By contrast, probabilities of a major osteoporotic fracture or hip fracture from the age of 70 years were much lower than those seen in Abu Dhabi and Kuwait due to higher mortality estimates for Saudi Arabia. Conclusion A country-specific FRAX tool for fracture prediction has been developed for Saudi Arabia which is expected to help guide decisions about treatment

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe
    corecore