18 research outputs found

    Time to Switch to Second-line Antiretroviral Therapy in Children With Human Immunodeficiency Virus in Europe and Thailand.

    Get PDF
    Background: Data on durability of first-line antiretroviral therapy (ART) in children with human immunodeficiency virus (HIV) are limited. We assessed time to switch to second-line therapy in 16 European countries and Thailand. Methods: Children aged <18 years initiating combination ART (≥2 nucleoside reverse transcriptase inhibitors [NRTIs] plus nonnucleoside reverse transcriptase inhibitor [NNRTI] or boosted protease inhibitor [PI]) were included. Switch to second-line was defined as (i) change across drug class (PI to NNRTI or vice versa) or within PI class plus change of ≥1 NRTI; (ii) change from single to dual PI; or (iii) addition of a new drug class. Cumulative incidence of switch was calculated with death and loss to follow-up as competing risks. Results: Of 3668 children included, median age at ART initiation was 6.1 (interquartile range (IQR), 1.7-10.5) years. Initial regimens were 32% PI based, 34% nevirapine (NVP) based, and 33% efavirenz based. Median duration of follow-up was 5.4 (IQR, 2.9-8.3) years. Cumulative incidence of switch at 5 years was 21% (95% confidence interval, 20%-23%), with significant regional variations. Median time to switch was 30 (IQR, 16-58) months; two-thirds of switches were related to treatment failure. In multivariable analysis, older age, severe immunosuppression and higher viral load (VL) at ART start, and NVP-based initial regimens were associated with increased risk of switch. Conclusions: One in 5 children switched to a second-line regimen by 5 years of ART, with two-thirds failure related. Advanced HIV, older age, and NVP-based regimens were associated with increased risk of switch

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease

    The role of Drosophila Piezo in mechanical nociception

    No full text
    Transduction of mechanical stimuli by receptor neurons is essential for senses such as hearing, touch, and pain(1–4). Ion channels play a role in neuronal mechanotransduction in invertebrates(1); however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, NOMPC, a TRP ion channel, acts as a mechanotransducer in Drosophila melanogaster(5) and Caenorhabditis elegans(6,7); however, it has no orthologues in mammals. DEG/ENaC family members are mechanotransducers in C. elegans(8) and potentially in D. melanogaster(9); however, a direct role of its mammalian homologues in sensing mechanical force is not shown. Recently, Piezo1 and Piezo2 were identified as components of mechanically activated (MA) channels in mammals(10). Piezos represent an evolutionary conserved family of transmembrane proteins. It is unknown whether Piezos function in mechanical sensing in vivo, and if they do, which mechanosensory modalities they mediate. Here, we study the physiological role of the single Piezo member in D. melanogaster (dpiezo). dpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts [Coste et al., accompanying paper(11)]. Behavioral responses to noxious mechanical stimuli were severely reduced in dpiezo knockout larvae, while responses to another noxious stimulus or touch were not affected. Knocking down dpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of dpiezo in these same neurons rescued the phenotype of the constitutive dpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a dpiezo dependent, mechanically-activated current. Finally, we found that dpiezo and ppk function in parallel pathways in ppk-positive cells, and that mechanical nociception is abolished in the absence of both channels. These data demonstrate physiological relevance of Piezo family in mechanotransduction in vivo, supporting a role of Piezo proteins in mechanosensory nociception

    The Australian Reproductive Genetic Carrier Screening Project (Mackenzie&rsquo;s Mission): Design and Implementation

    No full text
    Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie&rsquo;s Mission&mdash;the Australian Reproductive Genetic Carrier Screening Project. Mackenzie&rsquo;s Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with &gt;750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program
    corecore