745 research outputs found

    Clinical array-based karyotyping of breast cancer with equivocal HER2 status resolves gene copy number and reveals chromosome 17 complexity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>HER2 </it>gene copy status, and concomitant administration of trastuzumab (Herceptin), remains one of the best examples of targeted cancer therapy based on understanding the genomic etiology of disease. However, newly diagnosed breast cancer cases with equivocal HER2 results present a challenge for the oncologist who must make treatment decisions despite the patient's unresolved HER2 status. In some cases both immunohistochemistry (IHC) and fluorescence <it>in situ </it>hybridization (FISH) are reported as equivocal, whereas in other cases IHC results and FISH are discordant for positive versus negative results. The recent validation of array-based, molecular karyotyping for clinical oncology testing provides an alternative method for determination of HER2 gene copy number status in cases remaining unresolved by traditional methods.</p> <p>Methods</p> <p>In the current study, DNA extracted from 20 formalin fixed paraffin embedded (FFPE) tissue samples from newly diagnosed cases of invasive ductal carcinoma referred to our laboratory with unresolved HER2 status, were analyzed using a clinically validated genomic array containing 127 probes covering the HER2 amplicon, the pericentromeric regions, and both chromosome 17 arms.</p> <p>Results</p> <p>Array-based comparative genomic hybridization (array CGH) analysis of chromosome 17 resolved HER2 gene status in [20/20] (100%) of cases and revealed additional chromosome 17 copy number changes in [18/20] (90%) of cases. Array CGH analysis also revealed two false positives and one false negative by FISH due to "ratio skewing" caused by chromosomal gains and losses in the centromeric region. All cases with complex rearrangements of chromosome 17 showed genome-wide chromosomal instability.</p> <p>Conclusions</p> <p>These results illustrate the analytical power of array-based genomic analysis as a clinical laboratory technique for resolution of HER2 status in breast cancer cases with equivocal results. The frequency of complex chromosome 17 abnormalities in these cases suggests that the two probe FISH interphase analysis is inadequate and results interpreted using the HER2/CEP17 ratio should be reported "with caution" when the presence of centromeric amplification or monosomy is suspected by FISH signal gains or losses. The presence of these pericentromeric copy number changes may result in artificial skewing of the HER2/CEP17 ratio towards false negative or false positive results in breast cancer with chromosome 17 complexity. Full genomic analysis should be considered in all cases with complex chromosome 17 aneusomy as these cases are likely to have genome-wide instability, amplifications, and a poor prognosis.</p

    Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation

    Get PDF
    Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates

    Chemogenetic fingerprinting by analysis of cellular growth dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fundamental goal in chemical biology is the elucidation of on- and off-target effects of drugs and biocides. To this aim chemogenetic screens that quantify drug induced changes in cellular fitness, typically taken as changes in composite growth, is commonly applied.</p> <p>Results</p> <p>Using the model organism <it>Saccharomyces cerevisiae </it>we here report that resolving cellular growth dynamics into its individual components, growth lag, growth rate and growth efficiency, increases the predictive power of chemogenetic screens. Both in terms of drug-drug and gene-drug interactions did the individual growth variables capture distinct and only partially overlapping aspects of cell physiology. In fact, the impact on cellular growth dynamics represented functionally distinct chemical fingerprints.</p> <p>Discussion</p> <p>Our findings suggest that the resolution and quantification of all facets of growth increases the informational and interpretational output of chemogenetic screening. Hence, by facilitating a physiologically more complete analysis of gene-drug and drug-drug interactions the here reported results may simplify the assignment of mode-of-action to orphan bioactive compounds.</p

    Specification and guideline for technical aspects and scanning parameter settings of neonatal lung ultrasound examination

    Get PDF
    Lung ultrasound (LUS) is now widely used in the diagnosis and monitor of neonatal lung diseases.Nevertheless, in the published literatures,the LUS images may display a significant variation in technical execution,while scanning parameters may influence diagnostic accuracy.The inter- and intra-observer reliabilities of ultrasound exam have been extensively studied in general and in LUS.As expected,the reliability declines in the hands of novices when they perform the point-of-care ultrasound (POC US).Consequently,having appropriate guidelines regarding to technical aspects of neonatal LUS exam is very important especially because diagnosis is mainly based on interpretation of artifacts produced by the pleural line and the lungs.The present work aimed to create an instrument operation specification and parameter setting guidelines for neonatal LUS.Technical aspects and scanning parameter settings that allow for standardization in obtaining LUS images include (1)select a high-end equipment with high-frequency linear array transducer (12-14 MHz).(2)Choose preset suitable for lung examination or small organs.(3)Keep the probe perpendicular to the ribs or parallel to the intercostal space.(4)Set the scanning depth at 4-5 cm.(5)Set 1-2 focal zones and adjust them close to the pleural line.(6)Use fundamental frequency with speckle reduction 2-3 or similar techniques.(7)Turn off spatial compounding imaging.(8)Adjust the time-gain compensation to get uniform image from the near-to far-field

    Retrospective comparison between a regular and a split-dose protocol of 5-fluorouracil, cisplatin, and mitoxantrone for the treatment of far advanced hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with advanced hepatocellular carcinoma (HCC), combination chemotherapy using 5- fluorouracil, cisplatin, and mitoxantrone (FMP) could achieve a response rate > 20%, but the beneficial effect was compromised by formidable adverse events. Chemotherapy given in a split-dose manner was associated with reduced toxicities. In this retrospective study, we compared the efficacies and side effects between a regular and a split-dose FMP protocol approved in our medical center.</p> <p>Methods</p> <p>From 2005 to 2008, the clinical data of 84 patients with far advanced HCC, who had either main portal vein thrombosis and/or extrahepatic metastasis, were reviewed. Of them, 65 were treated by either regular (n = 27) or split-dose (n = 38) FMP and had completed at least one therapeutic course. The remaining 19 patients were untreated. Clinical parameters, therapeutic responses, survivals and adverse events were compared.</p> <p>Results</p> <p>The median overall survival was 6.0, 5.2, and 1.5 months, respectively, in patients receiving regular FMP, split-dose FMP, and no treatment (regular versus split-dose group, P = 0.447; regular or split-dose versus untreated group; P < 0.0001). Patients receiving split-dose treatment had a significantly lower risk of grade 3/4 neutropenia (51.9 versus 10.5%, P = 0.0005). When the two treated groups were combined, the median overall survival was 10.6 and 3.8 months respectively for patients achieving disease control and progressive disease (P < 0.001). Cox proportion hazard model identified Child-Pugh stage B (hazard ratio [HR], 2.216; P = 0.006), presence of extrahepatic metastasis (HR, 0.574; P = 0.048), and achievement of disease control (HR, 0.228; P < 0.001) as independent factors associated with overall survival. Logistic regression analysis revealed that anti-hepatitis C virus antibody (odds ratio [OR], 9.219; P = 0.002) tumor size (OR, 0.816; P = 0.036), and previous anti-cancer therapy (OR, 0.195; P = 0.017) were significantly associated with successful disease control.</p> <p>Conclusions</p> <p>Comparable overall survival was observed between patients receiving regular and split-dose FMP therapies. Patients receiving split-dose therapy had a significantly lower risk of grade 3/4 neutropenia. Positive anti-hepatitis C virus antibody, smaller tumor size, and absence of previous anti-cancer therapy were independent predictors for successful disease control.</p

    Antimetastatic Effects of Norcantharidin on Hepatocellular Carcinoma by Transcriptional Inhibition of MMP-9 through Modulation of NF-kB Activity

    Get PDF
    The rate of morbidity and mortality of hepatocellular carcinoma (HCC) in Taiwan has not lessened because of difficulty in treating tumor metastasis. Norcantharidin (NCTD) is currently used as an anticancer drug for hepatoma, breast cancer, and colorectal adenocarcinoma. NCTD possesses various biological anticancer activities, including apoptosis. However, detailed effects and molecular mechanisms of NCTD on metastasis are unclear. Thus, HCC cells were subjected to treatment with NCTD and then analyzed to determine the effects of NCTD on cell metastasis.Modified Boyden chamber assays revealed that NCTD treatment inhibited cell migration and invasion capacities of HCC cells substantially. Results of zymography and western blotting showed that activities and protein levels of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (u-PA) were inhibited by NCTD. Western blot analysis showed that NCTD inhibits phosphorylation of ERK1/2. Testing of mRNA level, quantitative real-time PCR, and promoter assays evaluated the inhibitory effects of NCTD on MMP-9 and u-PA expression in HCC cells. The chromatin immunoprecipitation (ChIP) assay for analyzing the genomic DNA sequences bound to these proteins was reactive to the transcription protein nuclear factor (NF)-kappaB, which was inhibited by NCTD. The expression of NF-kappa B was measured by western blot analysis, which revealed decreased nuclear-factor DNA-binding activity after NCTD treatment.NCTD inhibited MMP-9 and u-PA expression through the phosphorylation of ERK1/2 and NF-kappaB signaling pathway which serves as a powerful chemopreventive agent in HCC cell metastasis

    Socio-cognitive scaffolding with collaboration scripts: a meta-analysis

    Get PDF
    Scripts for computer-supported collaborative learning (CSCL) offer socio-cognitive scaffolding for learners to engage in collaborative activities that are considered beneficial for learning. Yet, CSCL scripts are often criticized for hampering naturally emerging collaboration. Research on the effectiveness of CSCL scripts has shown divergent results. This article reports a meta-analysis about the effects of CSCL scripts on domain-specific knowledge and collaboration skills. Results indicate that CSCL scripts as a kind of socio-cognitive scaffolding can enhance learning outcomes substantially. Learning with CSCL scripts leads to a small positive effect on domain-specific knowledge (d = 0.20) and a large positive effect on collaboration skills (d = 0.95) compared to unstructured CSCL. Further analyses reveal that CSCL scripts are particularly effective for domain-specific learning when they prompt transactive activities (i.e., activities in which a learner’s reasoning builds on the contribution of a learning partner) and when they are combined with additional content-specific scaffolding (worked examples, concept maps, etc.). Future research on CSCL scripts should include measures of learners’ internal scripts (i.e., prior collaboration skills) and the transactivity of the actual learning process

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Push-me-pull-you: how microtubules organize the cell interior

    Get PDF
    Dynamic organization of the cell interior, which is crucial for cell function, largely depends on the microtubule cytoskeleton. Microtubules move and position organelles by pushing, pulling, or sliding. Pushing forces can be generated by microtubule polymerization, whereas pulling typically involves microtubule depolymerization or molecular motors, or both. Sliding between a microtubule and another microtubule, an organelle, or the cell cortex is also powered by molecular motors. Although numerous examples of microtubule-based pushing and pulling in living cells have been observed, it is not clear why different cell types and processes employ different mechanisms. This review introduces a classification of microtubule-based positioning strategies and discusses the efficacy of pushing and pulling. The positioning mechanisms based on microtubule pushing are efficient for movements over small distances, and for centering of organelles in symmetric geometries. Mechanisms based on pulling, on the other hand, are typically more elaborate, but are necessary when the distances to be covered by the organelles are large, and when the geometry is asymmetric and complex. Thus, taking into account cell geometry and the length scale of the movements helps to identify general principles of the intracellular layout based on microtubule forces
    corecore