169 research outputs found

    Analysis of individual differences in neurofeedback training illuminates successful self-regulation of the dopaminergic midbrain

    Full text link
    The dopaminergic midbrain is associated with reinforcement learning, motivation and decision-making – functions often disturbed in neuropsychiatric disorders. Previous research has shown that dopaminergic midbrain activity can be endogenously modulated via neurofeedback. However, the robustness of endogenous modulation, a requirement for clinical translation, is unclear. Here, we examine whether the activation of particular brain regions associates with successful regulation transfer when feedback is no longer available. Moreover, to elucidate mechanisms underlying effective self-regulation, we study the relation of successful transfer with learning (temporal difference coding) outside the midbrain during neurofeedback training and with individual reward sensitivity in a monetary incentive delay (MID) task. Fifty-nine participants underwent neurofeedback training either in standard (Study 1 N = 15, Study 2 N = 28) or control feedback group (Study 1, N = 16). We find that successful self-regulation is associated with prefrontal reward sensitivity in the MID task (N = 25), with a decreasing relation between prefrontal activity and midbrain learning signals during neurofeedback training and with increased activity within cognitive control areas during transfer. The association between midbrain self-regulation and prefrontal temporal difference and reward sensitivity suggests that reinforcement learning contributes to successful self-regulation. Our findings provide insights in the control of midbrain activity and may facilitate individually tailoring neurofeedback training

    Design of a Wearable Perturbator for Human Knee Impedance Estimation during Gait

    Get PDF
    Mechanical impedance modulation is the key to natural, stable and efficient human locomotion. An improved understanding of this mechanism is necessary for the development of the next generation of intelligent prosthetic and orthotic devices. This paper documents the design methodologies that were employed to realize a knee perturbator that can experimentally estimate human knee impedance during gait through the application of angular velocity perturbations. The proposed experiment requires a light, transparent, wearable, and remotely actuated device that closely follows the movement of the biological joint. A genetic algorithm was used to design a polycentric hinge whose instantaneous center of rotation is optimized to be kinematically compatible with the human knee. A wafer disc clutch was designed to switch between a high transparency passive mode and a high impedance actuated mode. A remote actuation and transmission scheme was designed to enable high power output perturbations while minimizing the device’s mass. Position and torque sensors were designed for device control and to provide data for post-processing and joint impedance estimation. Pending the fabrication and mechanical testing of the device, we expect this knee perturbator to be a valuable tool for experimental investigation of locomotive joint impedance modulation

    Real-time Neurofeedback Using Functional MRI Could Improve Down-Regulation of Amygdala Activity During Emotional Stimulation: A Proof-of-Concept Study

    Get PDF
    The amygdala is a central target of emotion regulation. It is overactive and dysregulated in affective and anxiety disorders and amygdala activity normalizes with successful therapy of the symptoms. However, a considerable percentage of patients do not reach remission within acceptable duration of treatment. The amygdala could therefore represent a promising target for real-time functional magnetic resonance imaging (rtfMRI) neurofeedback. rtfMRI neurofeedback directly improves the voluntary regulation of localized brain activity. At present, most rtfMRI neurofeedback studies have trained participants to increase activity of a target, i.e. up-regulation. However, in the case of the amygdala, down-regulation is supposedly more clinically relevant. Therefore, we developed a task that trained participants to down-regulate activity of the right amygdala while being confronted with amygdala stimulation, i.e. negative emotional faces. The activity in the functionally-defined region was used as online visual feedback in six healthy subjects instructed to minimize this signal using reality checking as emotion regulation strategy. Over a period of four training sessions, participants significantly increased down-regulation of the right amygdala compared to a passive viewing condition to control for habilitation effects. This result supports the concept of using rtfMRI neurofeedback training to control brain activity during relevant stimulation, specifically in the case of emotion, and has implications towards clinical treatment of emotional disorders

    Rectus femoris hyperreflexia contributes to Stiff-Knee gait after stroke

    Full text link
    Background: Stiff-Knee gait (SKG) after stroke is often accompanied by decreased knee flexion angle during the swing phase. The decreased knee flexion has been hypothesized to originate from excessive quadriceps activation.However, it is unclear whether hyperreflexia plays a role in this activation. The goal of this study was to establish the relationship between quadriceps hyperreflexia and knee flexion angle during walking in post-stroke SKG. Methods: The rectus femoris (RF) H-reflex was recorded in 10 participants with post-stroke SKG and 10 healthy controls during standing and walking at the pre-swing phase. In order to attribute the pathological neuromodulation to quadriceps muscle hyperreflexia and activation, healthy individuals voluntarily increased quadriceps activity using electromyographic (EMG) feedback during standing and pre-swing upon RF H-reflex elicitation. Results: We observed a negative correlation (R=−0.92,p= 0.001) between knee flexion angle and RF H-reflex amplitude in post-stroke SKG. In contrast, H-reflex amplitude in healthy individuals in presence (R= 0.47,p= 0.23) or absence (R=−0.17,p= 0.46) of increased RF muscle activity was not correlated with knee flexion angle. We observed a body position-dependent RF H-reflex modulation between standing and walking in healthy individuals with voluntarily increased RF activity (d= 2.86,p= 0.007), but such modulation was absent post-stroke (d= 0.73,p= 0.296). Conclusions: RF reflex modulation is impaired in post-stroke SKG. The strong correlation between RF hyperreflexia and knee flexion angle indicates a possible regulatory role of spinal reflex excitability in post-stroke SKG. Interventions targeting quadriceps hyperreflexia could help elucidate the causal role of hyperreflexia on knee joint function in post-stroke SKG

    The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat

    Get PDF
    5-APB, commonly marketed as ‘benzofury’ is a new psychoactive substance and erstwhile ‘legal high’ which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in ‘head shops’ and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesized that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [125I]RTI-121 and [3H]ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonized by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB’s pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB’s activity at the 5-HT2B receptor may cause cardiotoxicity

    Self-regulation of the dopaminergic reward circuit in cocaine users with mental imagery and neurofeedback

    Full text link
    BACKGROUND Enhanced drug-related reward sensitivity accompanied by impaired sensitivity to non-drug related rewards in the mesolimbic dopamine system are thought to underlie the broad motivational deficits and dysfunctional decision-making frequently observed in cocaine use disorder (CUD). Effective approaches to modify this imbalance and reinstate non-drug reward responsiveness are urgently needed. Here, we examined whether cocaine users (CU) can use mental imagery of non-drug rewards to self-regulate the ventral tegmental area and substantia nigra (VTA/SN). We expected that obsessive and compulsive thoughts about cocaine consumption would hamper the ability to self-regulate the VTA/SN activity and tested if real-time fMRI (rtfMRI) neurofeedback (NFB) can improve self-regulation of the VTA/SN. METHODS Twenty-two CU and 28 healthy controls (HC) were asked to voluntarily up-regulate VTA/SN activity with non-drug reward imagery alone, or combined with rtfMRI NFB. RESULTS On a group level, HC and CU were able to activate the dopaminergic midbrain and other reward regions with reward imagery. In CU, the individual ability to self-regulate the VTA/SN was reduced in those with more severe obsessive-compulsive drug use. NFB enhanced the effect of reward imagery but did not result in transfer effects at the end of the session. CONCLUSION CU can voluntary activate their reward system with non-drug reward imagery and improve this ability with rtfMRI NFB. Combining mental imagery and rtFMRI NFB has great potential for modifying the maladapted reward sensitivity and reinstating non-drug reward responsiveness. This motivates further work to examine the use of rtfMRI NFB in the treatment of CUD

    Methamphetamine Inhibits the Glucose Uptake by Human Neurons and Astrocytes: Stabilization by Acetyl-L-Carnitine

    Get PDF
    Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 µM increased the uptake while 200 µM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers

    COVID-19 and possible links with Parkinson\u27s disease and parkinsonism: from bench to bedside

    Get PDF
    This Viewpoint discusses insights from basic science and clinical perspectives on coronavirus disease 2019 (COVID-19)/severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in the brain, with a particular focus on Parkinson\u27s disease. Major points include that neuropathology studies have not answered the central issue of whether the virus enters central nervous system neurons, astrocytes or microglia, and the brain vascular cell types that express virus have not yet been identified. Currently, there is no clear evidence for human neuronal or astrocyte expression of angiotensin-converting enzyme 2 (ACE2), the major receptor for viral entry, but ACE2 expression may be activated by inflammation, and a comparison of healthy and infected brains is important. In contrast to the 1918 influenza pandemic and avian flu, reports of encephalopathy in COVID-19 have been slow to emerge, and there are so far no documented reports of parkinsonism apart from a single case report. We recommend consensus guidelines for the clinical treatment of Parkinson\u27s patients with COVID-19. While a role for the virus in causing or exacerbating Parkinson\u27s disease appears unlikely at this time, aggravation of specific motor and non-motor symptoms has been reported, and it will be important to monitor subjects after recovery, particularly for those with persisting hyposmia

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated?

    Get PDF
    An increasing number of studies using real-time fMRI neurofeedback have demonstrated that successful regulation of neural activity is possible in various brain regions. Since these studies focused on the regulated region(s), little is known about the target-independent mechanisms associated with neurofeedback-guided control of brain activation, i.e. the regulating network. While the specificity of the activation during self-regulation is an important factor, no study has effectively determined the network involved in self-regulation in general. In an effort to detect regions that are responsible for the act of brain regulation, we performed a post-hoc analysis of data involving different target regions based on studies from different research groups. We included twelve suitable studies that examined nine different target regions amounting to a total of 175 subjects and 899 neurofeedback runs. Data analysis included a standard first- (single subject, extracting main paradigm) and second-level (single subject, all runs) general linear model (GLM) analysis of all participants taking into account the individual timing. Subsequently, at the third level, a random effects model GLM included all subjects of all studies, resulting in an overall mixed effects model. Since four of the twelve studies had a reduced field of view (FoV), we repeated the same analysis in a subsample of eight studies that had a well-overlapping FoV to obtain a more global picture of self-regulation. The GLM analysis revealed that the anterior insula as well as the basal ganglia, notably the striatum, were consistently active during the regulation of brain activation across the studies. The anterior insula has been implicated in interoceptive awareness of the body and cognitive control. Basal ganglia are involved in procedural learning, visuomotor integration and other higher cognitive processes including motivation. The larger FoV analysis yielded additional activations in the anterior cingulate cortex, the dorsolateral and ventrolateral prefrontal cortex, the temporo-parietal area and the visual association areas including the temporo-occipital junction. In conclusion, we demonstrate that several key regions, such as the anterior insula and the basal ganglia, are consistently activated during self-regulation in real-time fMRI neurofeedback independent of the targeted region-of-interest. Our results imply that if the real-time fMRI neurofeedback studies target regions of this regulation network, such as the anterior insula, care should be given whether activation changes are related to successful regulation, or related to the regulation process per se. Furthermore, future research is needed to determine how activation within this regulation network is related to neurofeedback success
    corecore