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PERSPECTIVE OPEN

COVID-19 and possible links with Parkinson’s disease and
parkinsonism: from bench to bedside
David Sulzer 1, Angelo Antonini 2, Valentina Leta3,4, Anna Nordvig5, Richard J. Smeyne6, James E. Goldman7, Osama Al-Dalahmah7,
Luigi Zecca8, Alessandro Sette9,10, Luigi Bubacco 11, Olimpia Meucci 12,13,14, Elena Moro15,16,17, Ashley S. Harms 18, Yaqian Xu19,
Stanley Fahn5 and K. Ray Chaudhuri 3,4✉

This Viewpoint discusses insights from basic science and clinical perspectives on coronavirus disease 2019 (COVID-19)/severe acute
respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in the brain, with a particular focus on Parkinson’s disease. Major points
include that neuropathology studies have not answered the central issue of whether the virus enters central nervous system
neurons, astrocytes or microglia, and the brain vascular cell types that express virus have not yet been identified. Currently, there is
no clear evidence for human neuronal or astrocyte expression of angiotensin-converting enzyme 2 (ACE2), the major receptor for
viral entry, but ACE2 expression may be activated by inflammation, and a comparison of healthy and infected brains is important. In
contrast to the 1918 influenza pandemic and avian flu, reports of encephalopathy in COVID-19 have been slow to emerge, and
there are so far no documented reports of parkinsonism apart from a single case report. We recommend consensus guidelines for
the clinical treatment of Parkinson’s patients with COVID-19. While a role for the virus in causing or exacerbating Parkinson’s disease
appears unlikely at this time, aggravation of specific motor and non-motor symptoms has been reported, and it will be important to
monitor subjects after recovery, particularly for those with persisting hyposmia.

npj Parkinson’s Disease            (2020) 6:18 ; https://doi.org/10.1038/s41531-020-00123-0

INTRODUCTION
Over the past twenty years, novel viral epidemics, including
influenza, severe acute respiratory syndrome (SARS) and Middle
Eastern respiratory syndrome (MERS), have appeared, likely
through zoonosis1–6. There are few, if any, therapeutic options
for treating these disorders and they can induce significant
mortality7,8. In 2019, a novel coronavirus outbreak, known as
COVID-19, was reported in China, and as of May 2020, it had
spread to 229 countries9.
This coronavirus, known as SARS-CoV-2, is a large enveloped

non‐segmented positive‐sense RNA virus10. When the SARS-CoV-2
virus, and in particular its Spike (S) protein, makes contact with
cells, it binds to a number of host proteins (known as virus
receptors) that assist in its entry10.

SYMPTOMS
Like its related family members SARS-CoV and MERS-CoV, SARS-
CoV-2 initially presents as a respiratory illness, characterized by
cough, dyspnea, fever, and other upper and lower respiratory
systems manifestations11. However, COVID-19 is associated with a

variety of other symptoms and clinical manifestations due to its
spread to many other organs and systems11.
At this time, it appears that all subjects who have recovered

from COVID-19 have developed T cells that recognize specific viral
epitopes, including the S protein12. The extraordinarily wide range
of symptoms and severity, including many infected subjects
showing mild or no effects, may be due to cross-reactivity of
T cells previously developed in response to prior coronavirus
infections that cross-react with SARS-CoV-2, and it is remarkable
that nearly half of individuals tested from blood samples prior to
2019 have such cells12. It is also possible that different routes of
infection, including via the gastrointestinal tract, may result in
different symptoms13.
Epidemiological and public health studies indicate that infec-

tion with the SARS-CoV-2 affects all demographics, but has grave
implications for older frail subjects14, particularly those with
comorbidities as well as Black, Asian, and minority ethnic (BAME)
subjects in a disproportionate manner (https://www.england.nhs.
uk/coronavirus/workforce/addressing-impact-of-covid-19-on-bam
e-staff-in-the-nhs/). This is not always the case for viral disorders,
as some, like polio, are typically more dangerous for the young15.
The impression that SARS-CoV-2 infection was particularly
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Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032, USA. 6Department of Neurosciences, Thomas
Jefferson University, Philadelphia, PA 19107, USA. 7Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University and the New York
Presbyterian Hospital, New York, NY 10032, USA. 8Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy. 9Division of Vaccine Discovery, La
Jolla Institute for Allergy and Immunology, La Jolla, CA 92093, USA. 10Department of Medicine, University of California, San Diego, CA 92093, USA. 11Department of Biology,
University of Padova, Padova, Italy. 12Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA. 13Center of
Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
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pathogenic in older frail subjects has been confirmed by high
mortality rates, particularly in residential home patients across the
United Kingdom, Italy, the United States, and many other
countries16,17. Moreover, other comorbidities and factors have
been associated with more severe infection, such as diabetes,
obesity, pre-existing end organ disease, hypertension, and male
sex18,19. It has been suggested that the cytokine storm is more
easily triggered in patients with chronic inflammation, such as
those with diabetes, obesity, and cardiac disease20. The cause of
high mortality in older BAME subjects reported in the UK and USA
remains unclear, although role of comorbidities such as diabetes,
hypertension, and obesity as well as social deprivation are
implicated (https://www.england.nhs.uk/coronavirus/workforce/
addressing-impact-of-covid-19-on-bame-staff-in-the-nhs/).
While the majority of infected people exhibit mild or moderate

symptoms and do not require hospitalization, more severe
patients need to be hospitalized and sometimes intubated due
to severe respiratory distress21. Other serious consequences of
COVID-19 include acute kidney injury, a coagulopathy similar to
disseminated intravascular coagulation22, thrombosis23, and a
newly recognized post-infection syndrome in children, known as
multi-system inflammatory syndrome in children potentially
associated with COVID-1924. The sequelae of each of these
syndromes can result in multi-organ failure11,25.
A significant number of those diagnosed with COVID-19 have

reported a broad spectrum of neurological consequences26–32.
Neurological symptoms include those associated with dysfunction
of the central (fatigue, headache, confusion, stroke33, dizziness,
syncope34, seizure, anorexia, and insomnia)35–38, peripheral
(anosmia, ageusia, myoclonus39, neuropathic pain, and myal-
gias)26,35,40, combined central-peripheral (Guillain Barre syn-
drome41) and enteric nervous systems (diarrhea13). Some
gastrointestinal manifestations, including diarrhea, may be related
to the expression of the viral receptor ACE2 and a serine protease,
transmembrane serine protease 2 (TMPRSS2), involved in S protein
priming, in the small intestinal epithelia and colon42.
As many as 65% of COVID-19 affected individuals reported

hyposmia and ageusia43, features that suggest the possibility of
trans-synaptic spread via the olfactory, lingual, and glossopharyngeal
nerves (Fig. 1), secondary to a respiratory route of infection. Hyposmia
is now officially recognized as a symptom of COVID-19 by the UK
government and may be a sign in “asymptomatic” carriers who may
not have upper respiratory tract symptoms.
A recent review of 43 confirmed COVID-19 cases in a London,

UK hospital suggested emergence of specific neurological
presentations, including encephalopathies, inflammatory central
nervous system syndromes, ischemic strokes, and peripheral
neurological disorders, although parkinsonism and rates of
hyposmia or ageusia were not reported44.
We and others have previously flagged concerns regarding

COVID-19 in people with Parkinson’s disease (PD), especially for
older and frail subjects with advanced PD who may be particularly
vulnerable45,46.

HISTORICAL ASPECTS OF VIRUSES AND PARKINSONISM
It is remarkable that a relationship between the presence of
antibodies to coronaviruses that cause the common cold,
coronavirus OC43 and 229E, in the cerebrospinal fluid (CSF) and
Parkinson’s disease was reported nearly twenty years prior to the
current pandemic by Stanley Fahn and colleagues47. Prior
coronaviruses have been occasionally reported to exhibit neuro-
logical manifestations and CSF invasion48, including in
children49,50.
Medical history provides observations supporting links between

viral infections and parkinsonism51. The best known example is
the post-encephalitic parkinsonism observed during the encepha-
litic lethargica outbreak that overlapped with the Spanish Flu

(influenza A virus H1N1) pandemic in 191852. However, after 100
years, the cause of encephalitis lethargica still remains a mystery53.
While a causal role of influenza A H1N1 virus in the development
of post-encephalitic parkinsonism is not confirmed52, an associa-
tion between influenza A virus infection and development of
transient parkinsonism is reported54. Notably, the avian flu
resulted in parkinsonism in many survivors55. Other viral infections
have been associated with the development of transient or, more
rarely, permanent parkinsonism, including Epstein-Barr, Japanese
encephalitis, Coxsackie, West Nile, Western equine encephalo-
myelitis, and human immunodeficiency virus, mostly due to
induction of neuroinflammation and/or hypoxic brain injury with
structural/functional damage within the basal ganglia51,54 (Table
1). In addition, debated evidence suggests that previous infection
with herpes simplex 1, Epstein-Barr, varicella zoster, hepatitis C,
and influenza A virus can increase the risk of developing PD in the
long-term54. Although the “viral hypothesis“ was generally ignored
after the discovery of genetic mutations involved in PD
pathogenesis, the role of “environmental” factors acting as
peripheral triggers of the neurodegenerative process in suscep-
tible individuals has been increasingly acknowledged56.

Fig. 1 Possible entry routes for SARS-CoV-2 into central nervous
system and potential intracellular consequences. There is evi-
dence for SARS-CoV-2 invasion of vasculature in the brain, but little
evidence for SARS-CoV-2 in brain parenchyma at this time: this issue
will become clearer with results from ongoing autopsy studies.
Whether or not the virus is present in neurons or astrocytes, there
may be multiple consequences for brain cells, in part through
intracellular responses to inflammation that could lead to protein
misfolding, a feature of neurodegenerative disorders.

Table 1. Mechanisms involved in the pathogenesis of viral-induced
parkinsonism.

Mechanism Type of neuronal
damage

Virus tropism for basal ganglia, replication and
subsequent neuronal lysis

Direct

Microglia activation and release of pro-
inflammatory factors and T cell response

Indirect

Hypercytokinemia and loss of vascular integrity Indirect

Hypoxic brain injury Indirect
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SARS-COV-2 RECEPTORS AND CELLULAR UPTAKE
There is a wide diversity of proteins, particularly glycoproteins,
that act as cellular receptors for coronavirus spike proteins57.
SARS-CoV-2 shares 70–80% of its genome with SARS-CoV and a

smaller but significant homology with MERS-CoV58. This homology
extends to the S protein58 that is the point of attachment to
plasma membrane proteins which act as viral receptors for cellular
infection. The S protein is thought to require a priming step in
which it is cleaved by a cellular protease, which for SARS-CoV and
SARS-CoV-2 is reported to be the cellular serine protease,
TMPRSS259.
The extensive research devoted to determining how the

binding of the virus leads to cellular endocytosis of the virus,
leading ultimately to RNA translation, transcription, and viral
replication, will not be reviewed here.
At this time it appears that the main protein responsible for

cellular accumulation of SARS-CoV-2 is angiotensin-converting
enzyme 2 (ACE2)27,60,61, an enzyme that converts angiotensin II to
angiotensin. ACE2 also acts as a receptor for several other
coronavirus, including SARS-CoV62,63. The distribution of ACE2
throughout the body and brain is discussed below.
Recent in-silico studies64,65 propose that, in addition to ACE2, a

second mechanism may enable cellular endocytosis of SARS-CoV-
2. Similar to MERS-CoV, and in contrast to SARS-CoV, SARS-CoV-2
appears to display high binding affinity to sialic acid residues,
providing an additional candidate for binding. Sialic acid residues
are found on plasma membrane proteins of many cell types,
including neurons, and are very highly expressed in the upper
respiratory tract.
Additional observations that may test the predictions from in-

silico reports implicating a role for sialic acid residues as SARS-
CoV-2 receptors include (1) efficacy of the therapeutic use of
lactoferrin66, an antiviral agent that interacts with sialic acid
residues; (2) an ongoing clinical trial of DAS181 (https://
clinicaltrials.gov/ct2/show/NCT04324489), a drug designed to
block viral access by cleaving sialic acid; (3) that the shedding
pattern of SARS-CoV-2 infection is different from that of SARS-CoV
and more similar to that of “standard” influenza66, where sialic
acid receptors play a major role; (4) a bioinformatic study reports
binding of S-protein to sialic acid glycans in a region close to that
identified by the in silico studies65,67. To our knowledge, while
links between sialic acid and neurotropism for mouse hepatitis
virus68 and adenoviruses69 have been suggested, there are no
published investigations on this alternative pathway for SARS-
CoV-2 interaction in the nervous system.
There are additional strong candidates for receptors for the

virus, including the lectin CD209L (also known as L-SIGN), which
acts as a receptor for the SARS virus62,70. This should be analyzed
both in the nervous system and additional tissues, as well as other
suggested candidate coronavirus receptors, most of which are
highly charged and glycosylated57.

POTENTIAL NEUROTROPISM OF COVID-19 VIRUS
At this time, we know very little about SARS-CoV-2 in the brain.
Post-mortem studies on patients with SARS, however to have
suggested the presence of viral particles in central nervous system
(CNS) tissue71,72.
A recent publication examining the localization of SARS-CoV-2

in 27 people who died from COVID-19 demonstrated that 36%
had apparently low levels of SARS-CoV-2 RNA and proteins in the
brain, although they did not report the cellular localization or
regions examined, and the signals may not have been present
within the brain parenchyma73. A second study similarly reports
detectable SARS-CoV-2 RNA in four of 12 brain samples, although
again the signal may not have been from brain parenchymal
cells74.

While there is, at this time, little evidence that SARS-CoV-2
enters the brain parenchyma, there are multiple means by which
the virus might be able to do so75. Preclinical animal studies
(reviewed by Natoli et al.76) report that after intranasal inoculation
of SARS‐CoV in transgenic mice that overexpress human
ACE277, or MERS-CoV in mice overexpressing human dipeptidyl
peptidase 478, SARS‐CoV and MERS-CoV can invade the brain,
possibly via transit through the olfactory nerves, to reach CNS
nuclei, including thalamus and brainstem; we note, however, that
these mice over-express the viral receptors, and these reports do
not model normal infection routes.
Trans-synaptic transfer has been documented in rat and pig for

other types of coronavirus, including hemagglutinating encepha-
lomyelitis virus (HEV)79–81 and avian infectious bronchitis virus
(IBV, also known as avian coronavirus)82, in both in vitro and
in vivo studies.
Coronavirus might also reach the CNS via the hematogenous or

lymphatic route, although this seems unlikely in early phases of
the disease, as particles of SARS-CoV were not detected in non-
neuronal cells in human post-mortem brain tissue71,72.
One potential mechanism for SARS-CoV-2 RNA presence within

the CNS is blood-brain barrier (BBB) breakdown due to the
cytokine storm associated with peripheral viral infection. It is well
established that pro-inflammatory cytokines associated with
inflammation and/or SARS-CoV-2 viral infection, such as tumor
necrosis factor (TNF) and interleukin 1 beta (IL-1beta), mediate
BBB breakdown83. This breakdown could either be long-term,
similar to the one observed in neurodegenerative diseases
allowing for infiltration of immune cells and viral particles, or
transient, resulting in encephalitis84,85.
We note that while there are at this time several millions of

SARS-CoV-2 infected individuals, there are only a few reports
suggesting possible encephalitis, and only two that show
evidence of COVID-19 virus in the CSF as assessed by reverse
transcription polymerase chain reaction (RT-PCR). This suggests
that even with the presence of high viral load in the blood stream
and severe inflammation, COVID-19 virus is unlikely to exhibit
direct neurotropism, but rather appears to cause inflammatory-
mediated brain responses86.

PRESENCE OF SARS-COV-2 RECEPTORS IN THE BRAIN
ACE2 was identified in 2000 as a novel carboxypeptidase that
cleaves the vasoconstrictor angiotensin II to the vasodilator
angiotensin (1–7), in addition to cleaving several other peptides87.
ACE2 is a transmembrane protein, and can itself be cleaved near
the transmembrane region and thereby be “shed” into a soluble
form with anti-viral activity88,89, in part as the soluble form likely
binds virus. Plasma membrane ACE2 is, confusingly, often referred
to as the “ACE2 receptor”, but this is intended to convey that the
protein, in addition to its normal function, can act as a receptor for
virus—and not that it is a receptor for ACE2.
ACE2 is widely expressed in human tissue90 and appears to be

increased by inflammatory signals including in macrophages91.
Evidence supporting ACE2 expression in human brain parench-
yma, however, remains poor, in contrast to clear expression in the
brain vessels92. There is an extensive literature indicating that
ACE2 may serve as a protective stress-induced response path-
way93–95 and that its expression might be harnessed clinically for
cardiac and neurological disorders, which will not be
reviewed here.
In particular, while ACE2 expression has been demonstrated in

CNS neurons in some animal models96,97, the presence of ACE2 in
human CNS neurons is not well established, nor are specific brain
regions or neuronal, astrocyte, microglial, immune or vascular cell
types well characterized.
The ACE2 promoter harbors five hypoxia-responsive elements,

and hypoxia may upregulate ACE2 via HIF1A-independent
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mechanisms98, but it has not yet been determined if hypoxia
upregulates ACE2 in brain cells.
It is very important to compare the presence of brain ACE2, and

perhaps of CD209L and molecules with sialic acid residues, in both
control individuals and those with high inflammation. The
expression of some of these “receptors”, including ACE2, can be
enhanced by cytokines, such as interferon99, or other inflamma-
tory responses90, and may be regulated by excitotoxicity100.
The Human Protein Atlas reports that ACE2 is not detected in

normal human brain, but indicates low amounts in mouse brain
(https://www.proteinatlas.org/ENSG00000130234-ACE2/tissue). As
mentioned, an immunocytochemistry study of human brain tissue
indicated that ACE2 is present in non-neuronal cells of vasculature
in human brain tissue92, although that study did not define the
precise cell types that express the receptor. A preprint of a single
cell transcriptomic analysis suggests differential levels of ACE2
mRNA in different mouse brain regions101. Another preprint
features a meta-analysis of single-cell and single-nucleus RNA
sequencing datasets indicating co-expression of ACE2 and
TMPRSS2 in oligodendrocytes102. However, additional studies are
required to validate and localize protein co-expression in the CNS.
Because SARS-CoV-2 proteins can interact with host proteins

involved in pathways that are altered during aging, including
potential mitochondrial dysfunction, loss of proteostasis, autop-
hagy dysfunction, inflammation, and endoplasmic reticulum
stress, it is possible that SARS-CoV-2 infection may prompt protein
misfolding and aggregation (Fig. 1)103–105. Of particular relevance
for PD, recent studies have suggested that the aggregation-prone
protein, alpha-synuclein, plays a role in the innate immune
response to viral infections106,107.
It will be important to follow up and clinically monitor patients

infected by COVID-19 virus, particularly those who developed
specific neurological disturbances, such as sustained hyposmia108,
syncope, and persistent confusion, given the relevance of these
conditions to PD and PD dementia. Hyposmia is a well-recognized
prodromal feature of PD109 as well as Alzheimer’s disease110 and
may be due in part to dysfunction of inhibitory dopaminergic
neurons in the olfactory bulb111. Although we do not yet know the
precise mechanisms underlying hyposmia in COVID-19, it may be
that patients who develop hyposmia become more susceptible to
a neurodegenerative process or, alternatively, hyposmia may be a
sign of peripheral inflammatory involvement of the olfactory
mucosa. It is, therefore, reasonable to suggest specifically
following up those COVID-19-linked cases where recovery is
associated with sustained hyposmia after the acute illness of
COVID-19 has subsided.

COVID-19 AND THE POSSIBILITY OF A POST-VIRAL
PARKINSONISM: CLINICAL AND MOLECULAR RATIONALES
Some literature has already highlighted potential links between
COVID-19 virus and neurodegenerative conditions, including
suggestions regarding PD104,112. These are based on multiple
observations:

1. The ability of coronaviruses to enter the CNS through the
nasal cavity with subsequent neuronal death77,78, as shown
in animal studies.

2. Hyposmia is well documented in COVID-19 patients without
nasal obstruction and rhinorrhea108,113,114 and is also a
common prodromal feature of PD115.

3. Basal ganglia lesions may occur in the context of a
thromboembolic encephalopathy in COVID-19116.

4. The presence of higher levels of antibodies against other
coronaviruses that cause the common cold in the CSF of PD
patients compared to healthy controls suggests a possible
involvement of viral infection in the pathogenesis of PD47.

5. There are reports that ACE2 may be expressed in various

regions of the nervous system93,117, although as detailed
above, further neuropathological investigation is required.
Given the interferon activation of this protein, it will be
important to examine subjects with CNS inflammation or
encephalitis.

6. The recent reports of syncope with no abnormal rhythms on
cardiac device interrogation hint at a potential role for
neurally-mediated syncope34 vs. orthostasis, suggesting the
importance of these investigations for PD patients who
often suffer from dysautonomia118.

7. A single case report of a patient who developed myoclonus
and an acute but spontaneously reversible hypokinetic rigid
syndrome, with DaTscan showing reduction of dopamine
transporter uptake in the putamen as well as hyposmia119.

8. The angiotensin system, which is implicated in COVID-19
pathogenesis, may be important in neuroinflammatory and
neurodegenerative mechanisms observed in PD120,121.

9. SARS-CoV-2 proteins can interact with human proteins
involved in biological mechanisms that drive dysfunction of
protein homeostasis that may lead to protein misfolding
and aggregation (Fig. 1)103,104.

10. The release of cytokines may activate resident immune cells
in the CNS and/or lead to their infiltration from the
periphery that result in brain cell damage. Such cells may
include activated T cells and microglia that may kill
neurons122–124, astrocytes, and vascular cell types. This
may occur through the selection of cells that specifically
recognize presented antigens from the infection or previous
infections, or via a general activation of cytotoxic cells that
recognize other antigens, including autoantigens, such as
those derived from alpha-synuclein which are implicated in
PD, Lewy Body dementias, multiple system atrophy, and
multiple sclerosis125,126. High levels of pro-inflammatory
cytokines, such as TNF and IL-1beta, are associated with
increased risk of PD, while use of non-steroidal anti-
inflammatory drugs (NSAIDs) and anti-TNF biologics reduce
the risk127. Anti-TNF biologics are currently under investiga-
tion for COVID-19.

Beyond the significant observational literature discussed above
that suggests a relationship between viral infection and PD51, a
number of preclinical studies have directly addressed this issue.
Jang et al. examined the potential for a neurotropic Type A
influenza virus (A/Vietnam, 1203/04, H5N1, a.k.a. bird flu) to induce
parkinsonian pathology in mice. They found that this strain of
influenza virus directly infected neurons, with particular affinity for
circuits involved in PD. Subsequent to recovery from this infection,
the mice exhibited ataxia, tremor, and bradykinesia128 as well as a
transient but significant loss of dopaminergic neuron phenotype,
an early neuroinflammatory program, long-lasting microgliosis
and an increase in alpha-synuclein expression129.
Another neurotropic virus, the mosquito-borne alphavirus,

Western equine encephalitic virus (WEEV) also induces post-
encephalitic parkinsonism. Like the influenza virus, WEEV induced
activation of microglia and astrocytes, selective loss of dopami-
nergic neurons in the substantia nigra pars compacta (SNpc) and
behavioral abnormalities consistent with PD in mouse models130.
Importantly, the common denominator of these viruses is that
they enter the CNS and directly infect cells.
As we do not yet know if the SARS-CoV-2 virus directly infects

CNS neurons, it is important to determine if non-neurotropic
viruses also have the potential to contribute to development of
PD. The idea that a peripheral cytokine storm from non-
neurotropic viruses can induce encephalitis has been suggested
for many other viral infections, including the 1918 Spanish
influenza (Type A H1N1)131,132 as well as respiratory syncytial
virus133.
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Notably, the pandemic 2009 H1N1 (CA/09) influenza virus does not
infect neurons in the central, peripheral or enteric nervous systems,
but can nevertheless induce a significant inflammatory response in
the CNS, including within the SNpc. Evidence that an indirect
neuroinflammatory mechanism of this sort might increase the risk of
parkinsonism is that mice infected with the 2009 H1N1 virus, after
complete resolution of peripheral infection, displayed a higher level of
SNpc DA neuron death after injection with the parkinsonian
neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
Administration of an influenza vaccine or the neuraminidase
inhibitor oseltamivir (Tamiflu) protected against the synergistic
response to the neurotoxin134. In these preclinical studies,
microgliosis and increase in inflammatory cytokines and chemo-
kines in the brain were not due to invasion of CD4+/CD8+ T-cells
from the periphery, suggesting that inflammatory cytokines
released during peripheral infection passed through the blood-
brain barrier135 and indirectly activated microglia, leading to a
parkinsonian cascade.
Interestingly, influenza vaccination in humans enhanced levels

of the anti-inflammatory cytokine interleukin 10 (IL-10)136, while
prophylactic treatment with oseltamivir (Tamiflu) decreased
disease severity of influenza in both human and mouse models,
and did not appear to interfere with appropriate T cell responses
to new influenza infection137. It may be that vaccination is
protective for nervous system inflammatory responses even from
viruses that do not infect neurons and astrocytes.

THE NEED FOR DETAILED AUTOPSY STUDIES
As deaths from SARS-CoV-2 infection continue, autopsy studies
will play a key role in defining CNS pathology, including in
patients with PD. However, due to increased precautions taken at
the time of autopsy, relatively few brain autopsies are being
performed. The U.S. Centers for Disease Control has issued
guidance on autopsies for confirmed SARS-CoV-2 decedents and
advises against performing procedures that generate aerosols,
such as those used to remove the brain (https://www.cdc.gov/
coronavirus/2019-ncov/hcp/guidance-postmortem-specimens.
html#biosafety). Most studies thus far lack neuropathologic
characterization altogether138–142, and an autopsy case series did
not provide detailed neuropathologic descriptions74. Moreover,
deaths occurring in nursing home and long-term care facilities,
where a large subset of patients suffering from dementia reside,
are less likely to result in autopsies. We thus expect a delay in
understanding whether and how SARS-CoV-2 infection specifically
alters neuropathology, including in PD.
Of the available studies with some neuropathologic data, one

case series of ten autopsies documented no signs of encephalitis
or CNS vasculitis, although the extent of neuroanatomic sampling
was not provided31. A second study of COVID-19 autopsy findings
included four brains that exhibited no encephalitis or neuronal
necrosis, but mild hypoxemic changes in three of the four brains
examined143. Although these studies have not identified specific
neuropathologic alterations, the extent of involvement of the CNS
in SARS-CoV-2 infection cannot be inferred from only 14 brains.
To establish how SARS-CoV-2 infection affects the CNS, the field

will require detailed neuropathologic studies with thorough
sampling of specific brain regions. At the Columbia University
Medical Center, a current approach involves sampling of multiple
neuroanatomic regions, including the cerebral cortex, watershed
areas, white matter, olfactory system, hippocampus, amygdala,
thalamus, hypothalamus, corpus striatum, pallidum, cerebellum,
midbrain, pons, medulla oblongata, and cervical cord. We
recommend that special attention be directed at documenting
the presence and neuroanatomic distribution of hypoxia-related
as well as inflammation-related pathologies, including leptome-
ningitis, encephalitis, and vasculitis.

THE CLINICAL PERSPECTIVE
Clinical implications of SARS-CoV-2 infection on PD are largely
speculative apart from two case series and case reports45,46. A
community-based case control study in Italy of 12 PD COVID-19
cases suggested substantial worsening of motor and non-motor
symptoms during mild to moderate COVID-19 illness, indepen-
dent of age and disease duration144, in line with an original case
report series by Antonini et al. In another survey across the
Lombardy region of Italy, 105 probable COVID-19 cases were
identified and the authors concluded that the risk, morbidity, and
mortality in patients with mild-to moderate PD with COVID-19 did
not differ from the general population145. Several viewpoints and
editorials have been published on the topic in addition to
extensive coverage in social media and journal viewpoint
papers146–151.
Currently there is no robust evidence that having PD imparts an

increased risk for susceptibility to COVID-19 or that COVID-19
confers a greater risk of PD, although, as noted above, there are
reported cases of worsening of PD symptoms in infected patients,
particularly in older frail patients on advanced therapies and one
case report of development of an acute hypokinetic syndrome
with hyposmia post COVID-19.
Broadly, the clinical impact of COVID-19 on PD could occur

through multiple avenues:

1. Development of COVID-19-related symptoms, particularly
high fever, severe respiratory distress, coagulopathy-related
syndrome, fatigue, myalgias, and related impaired stress
mechanisms.

2. Worsening of pre-existing dyspnea due to respiratory
distress; dyspnea may exist in up to 39% of PD patients152.

3. In acutely ill patients admitted to hospital, confusion and
delirium could occur (reported in over 25% of COVID-19
hospitalized subjects out of a survey of 3500 patients)38.

4. Worsening of specific symptoms, including motor symp-
toms as well as non-motor issues, such as pain, anxiety,
sleep disturbances and fatigue, especially with reduced
access to physical therapy and counseling45,144.

5. Social isolation and aggravation of underlying cognitive and
behavioral symptoms, specifically anxiety153.

6. Possibility of post-traumatic stress disorder (PTSD) as
observed in previous SARS and MERS pandemics38.

7. Increased levodopa requirement during acute admissions
and need for non-oral dopaminergic therapies in some
subjects with severe COVID-19 related symptoms45.

8. Potential for drug interaction of over the counter cough
remedies with anti-parkinsonian drugs such as monoamine
oxidase inhibitors.

9. Complexity in therapeutic management related to limita-
tions of in-person consultations and admissions to
hospital147.

The impact of severe infection (by default, implying a high viral
load or a pro-inflammatory state) may lead to hospitalization and
the need for supported breathing or mechanical ventilation,
particularly in older PD patients with multimorbidity and a high
frailty index154. The issue is further compounded because such
patients may be on non-oral therapies (subcutaneous apomor-
phine, intrajejunal levodopa infusion, and deep brain stimulation
(DBS)) for advanced PD151. Limited observations from admission of
such cases around the world (personal communication) and the
published case series suggest that such patients are particularly
vulnerable, with high mortality rates and may have an increased
levodopa requirement during the acute illness45,46. Pre-existing
dyspnea of PD152,155, respiratory muscle bradykinesia155 in
addition to a possible direct SARS-CoV-2-related brainstem-
generated suppression of cough reflex and perhaps of
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autoregulation of blood flow may play additional negative
roles77,78,156,157.
Fatigue has been commonly reported after many viral infec-

tions, most notably with Epstein-Barr virus158, and is evident in
many non-PD cases with COVID-19159. Fatigue was also common
in the series of PD cases reported45 and is an important
contributor of quality of life160. Myalgia is also common after viral
illnesses including COVID-1940,161, and in some cases of COVID-19
with PD, myalgia can be severe and involve muscles of the back. If
these observations are confirmed in larger cohorts of PD patients
with COVID-19, specific anti-fatigue/myalgia measures may need
to be implemented160. Consideration for the use of amantadine-
like drugs may be particularly relevant given their putative
antiviral effects162,163; however specific clinical trials are lacking.
Social isolation and its impact on PD are a concern and has

been called a “hidden sorrow” of the pandemic164. Social isolation
may cause heightened anxiety, aggravation of pre-existing
depression, the negative effects of stress on PD165, as well as
lack of exercise. In the previous SARS and MERS epidemics, one in
three hospitalized cases went on to develop a PTSD with 15%
developing depression and anxiety at 1 year, and fatigue in more
than 15%38. Anxiety in PD during COVID-19-related lockdown and
consequent stress is widely reported during telephone consulta-
tions in many countries, and specific strategies for home care
using telemedicine or remote counselling may need to be
implemented.
An overall consensus-led guideline for management of PD with

varying grades of COVID-19 needs to be developed and circulated

for implementation. A suggested template is provided in Fig. 2.
These observations can be applied to the elderly as well as
subjects with other neurodegenerative disorders, such as Alzhei-
mer’s disease or amyotrophic lateral sclerosis.

CONCLUSIONS
There has been a large number of papers on COVID-19 and PD
speculating on etiology, risks and consequences, in addition to
two documented case series of PD with COVID-19. We attempt to
prove a critical approach to these observations from currently
available clinical and molecular insights.

● The COVID-19 pandemic has led to an unprecedented crisis
for older people globally. There is a broad range of COVID-19
symptoms, perhaps related to pre-existing conditions and in
part to different modes of viral entry and the presence of
T cells that are reactive to prior coronavirus infections. The
neurological manifestations may be related to inflammation
involving capillaries and the blood-brain barrier, hypoxemia,
and thrombosis acting as triggers for seizures or leading to
ischemic or hemorrhagic strokes.

● Neuropathology studies have not yet clearly answered the
central issue of whether the virus enters central nervous
system neurons, astrocytes or microglia.

● In brain vasculature, the cell types that express virus have not
yet been identified.

● There is no clear evidence in human neurons or astrocytes for

Fig. 2 Flowchart identifying potential management issues in Parkinson’s disease patients. a Parkinson’s disease patients exposed to self-
isolation or b, c infection with Coronavirus disease 2019 virus.
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expression of the protein ACE2, which is thought to act as the
major viral receptor that enables viral entry. Such expression
may, however, be activated by inflammation, and thus
comparison of healthy and infected brains will be important.

● There is a variety of alternative viral receptors for coronavirus,
including sialic acid residues, that are insufficiently character-
ized and may provide entry into neurons and astrocytes.

● In contrast to the 1918 influenza pandemic and avian flu,
reports of encephalopathy in COVID-19 have been slow to
emerge, and there are so far no documented reports of an
induction of parkinsonism apart from a single report. While a
role for the virus in causing or exacerbating Parkinson’s
disease appears unlikely at this time, the aggravation of
specific motor and non-motor symptoms is reported.

● As the prevalence of PD rises sharply in the older age group,
particularly in those over the age of 80 years, a personalized
approach in the management of PD patients affected by
COVID-19 based on clinical and basic science evidence is
required. In addition, it will be important to monitor subjects
after recovery, particularly for those with persisting hyposmia.

DATA AVAILABILITY
Data sharing not applicable to this article as no data sets were generated or analyzed
during the current study.

Received: 27 May 2020; Accepted: 20 July 2020;

REFERENCES
1. Ye, Z. W. et al. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 16,

1686–1697 (2020).
2. Kim, S. M., Kim, Y. I., Pascua, P. N. & Choi, Y. K. Avian influenza a viruses: evolution

and zoonotic infection. Semin. Respir. Crit. Care. Med. 37, 501–511 (2016).
3. Morens, D. M., Taubenberger, J. K. & Fauci, A. S. H7N9 avian influenza A virus and

the perpetual challenge of potential human pandemicity. mBio 4. https://doi.
org/10.1055/s-0036-1584953 (2013).

4. Mostafa, A., Abdelwhab, E. M., Mettenleiter, T. C. & Pleschka, S. Zoonotic
potential of influenza A Viruses: a comprehensive overview. Viruses. https://doi.
org/10.3390/v10090497 (2018).

5. Reperant, L. A., Kuiken, T., Osterhaus, A. D., Webby, R. J. & Webster, R. G. Influ-
enza viruses: from birds to humans. Emergence of influenza A viruses. Hum.
Vaccin. Immunother. 8, 7–16 (2012).

6. Webster, R. G. Influenza virus: transmission between species and relevance to
emergence of the next human pandemic. Arch. Virol. Suppl. 13, 105–113 (1997).

7. Nguyen, A. M. & Noymer, A. Influenza mortality in the United States, 2009
pandemic: burden, timing and age distribution. PLoS ONE 8, e64198 (2013).

8. Salamatbakhsh, M., Mobaraki, K., Sadeghimohammadi, S. & Ahmadzadeh, J. The
global burden of premature mortality due to the Middle East respiratory syn-
drome (MERS) using standard expected years of life lost, 2012 to 2019. BMC
Public Health 19, 1523 (2019).

9. Zheng, J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int.
J. Biol. Sci. 16, 1678–1685 (2020).

10. Astuti, I. & Ysrafil Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2):
an overview of viral structure and host response. Diabetes Metab. Syndr. 14,
407–412 (2020).

11. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019
novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395,
507–513 (2020).

12. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans
with COVID-19 disease and unexposed individuals. Cell. https://doi.org/10.1016/
j.cell.2020.05.015 (2020).

13. Gu, J., Han, B. & Wang, J. COVID-19: gastrointestinal manifestations and potential
fecal-oral transmission. Gastroenterology 158, 1518–1519 (2020).

14. Shahid, Z. et al. COVID-19 and older adults: what we know. J. Am. Geriatr. Soc.
68, 926–929 (2020).

15. Mehndiratta, M. M., Mehndiratta, P. & Pande, R. Poliomyelitis: historical facts,
epidemiology, and current challenges in eradication. Neurohospitalist 4,
223–229 (2014).

16. O’Dowd, A. Covid-19: deaths in care home deaths in England and Wales rise
sharply. BMJ (Clin. Res. ed.) 369, m1727 (2020).

17. Abbatecola, A. M. & Antonelli-Incalzi, R. Editorial: COVID-19 spiraling of frailty in
older Italian patients. J. Nutr. Health Aging 24, 453–455 (2020).

18. Wang, B., Li, R., Lu, Z. & Huang, Y. Does comorbidity increase the risk of patients
with COVID-19: evidence from meta-analysis. Aging (Albany NY) 12, 6049–6057
(2020).

19. Garg, S. et al. Hospitalization rates and characteristics of patients hospitalized
with laboratory-confirmed coronavirus disease 2019—COVID-NET, 14 States,
March 1–30, 2020. MMWR Morb. Moral. Wkly Rep. 69, 458–464 (2020).

20. Miossec, P. Understanding the cytokine storm during COVID-19: contribution of
preexisting chronic inflammation. Eur. J. Rheumatol. https://doi.org/10.5152/
eurjrheum.2020.2062 (2020).

21. Goh, K. J. et al. Rapid progression to acute respiratory distress syndrome: review
of current understanding of critical illness from COVID-19 infection. Ann. Acad.
Med. Singap. 49, 108–118 (2020).

22. Harenberg, J. & Favaloro, E. COVID-19: progression of disease and intravascular
coagulation - present status and future perspectives. Clin. Chem. Lab. Med.
https://doi.org/10.1515/cclm-2020-0502 (2020).

23. Levi, M., Thachil, J., Iba, T. & Levy, J. H. Coagulation abnormalities and throm-
bosis in patients with COVID-19. Lancet Haematol. https://doi.org/10.1016/
s2352-3026(20)30145-9 (2020).

24. Chiotos, K. et al. Multisystem inflammatory syndrome in children during the
COVID-19 pandemic: a case series. J. Pediatric Infect. Dis. Soc. https://doi.org/
10.1093/jpids/piaa069 (2020).

25. Jose, R. J. & Manuel, A. COVID-19 cytokine storm: the interplay between
inflammation and coagulation. Lancet Respir. Med. https://doi.org/10.1016/
s2213-2600(20)30216-2 (2020).

26. Mao, L. et al. Neurologic manifestations of hospitalized patients with cor-
onavirus disease 2019 in Wuhan, China. JAMA Neurol. https://doi.org/10.1001/
jamaneurol.2020.1127 (2020).

27. Esposito, G. et al. Can the enteric nervous system be an alternative entrance
door in SARS-CoV2 neuroinvasion? Brain. Behav. Immun. https://doi.org/10.1016/
j.bbi.2020.04.060 (2020).

28. Li, Y. C., Bai, W. Z. & Hashikawa, T. The neuroinvasive potential of SARS-CoV2
may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol.
https://doi.org/10.1002/jmv.25728 (2020).

29. Moriguchi, T. et al. A first case of meningitis/encephalitis associated with SARS-
Coronavirus-2. Int. J. Infect. Dis. 94, 55–58 (2020).

30. De Felice, F. G., Tovar-Moll, F., Moll, J., Munoz, D. P. & Ferreira, S. T. Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous sys-
tem. Trends Neurosci. https://doi.org/10.1016/j.tins.2020.04.004 (2020).

31. Paniz-Mondolfi, A. et al. Central nervous system involvement by severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. https://doi.org/
10.1002/jmv.25915 (2020).

32. Poyiadji, N. et al. COVID-19-associated acute hemorrhagic necrotizing ence-
phalopathy: CT and MRI Features. Radiology. https://doi.org/10.1148/
radiol.2020201187 (2020).

33. Beyrouti, R. et al. Characteristics of ischaemic stroke associated with COVID-19. J.
Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2020-323586 (2020).

34. Ebrille, E. et al. Syncope as the presenting symptom of COVID-19 infection.
HeartRhythm Case Rep. https://doi.org/10.1016/j.hrcr.2020.04.015 (2020).

35. Lechien, J. R. et al. Clinical and epidemiological characteristics of 1,420 European
patients with mild-to-moderate coronavirus disease 2019. J. Intern. Med. https://
doi.org/10.1111/joim.13089 (2020).

36. Kotfis, K. et al. COVID-19: ICU delirium management during SARS-CoV-2 pan-
demic. Crit. Care 24, 176 (2020).

37. Zanin, L. et al. SARS-CoV-2 can induce brain and spine demyelinating lesions.
Acta Neurochir. (Wien). https://doi.org/10.1007/s00701-020-04374-x (2020).

38. Rogers, J. P. et al. Psychiatric and neuropsychiatric presentations associated with
severe coronavirus infections: a systematic review and meta-analysis with
comparison to the COVID-19 pandemic. Lancet Psychiatry. https://doi.org/
10.1016/S2215-0366(20)30203-0 (2020).

39. Rábano-Suárez, P. et al. Generalized myoclonus in COVID-19. Neurology. https://
doi.org/10.1212/wnl.0000000000009829 (2020).

40. Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019
novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069
(2020).

41. Toscano, G. et al. Guillain-Barré syndrome associated with SARS-CoV-2. N. Engl. J.
Med. https://doi.org/10.1056/NEJMc2009191 (2020).

42. D’Amico, F., Baumgart, D. C., Danese, S. & Peyrin-Biroulet, L. Diarrhea during
COVID-19 infection: pathogenesis, epidemiology, prevention, and management.
Clin. Gastroenterol. Hepatol. 18, 1663–1672 (2020).

43. Menni, C. et al. Real-time tracking of self-reported symptoms to predict potential
COVID-19. Nat. Med. https://doi.org/10.1038/s41591-020-0916-2 (2020).

D. Sulzer et al.

7

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2020)    18 

https://doi.org/10.1055/s-0036-1584953
https://doi.org/10.1055/s-0036-1584953
https://doi.org/10.3390/v10090497
https://doi.org/10.3390/v10090497
https://doi.org/10.1016/j.cell.2020.05.015
https://doi.org/10.1016/j.cell.2020.05.015
https://doi.org/10.5152/eurjrheum.2020.2062
https://doi.org/10.5152/eurjrheum.2020.2062
https://doi.org/10.1515/cclm-2020-0502
https://doi.org/10.1016/s2352-3026(20)30145-9
https://doi.org/10.1016/s2352-3026(20)30145-9
https://doi.org/10.1093/jpids/piaa069
https://doi.org/10.1093/jpids/piaa069
https://doi.org/10.1016/s2213-2600(20)30216-2
https://doi.org/10.1016/s2213-2600(20)30216-2
https://doi.org/10.1001/jamaneurol.2020.1127
https://doi.org/10.1001/jamaneurol.2020.1127
https://doi.org/10.1016/j.bbi.2020.04.060
https://doi.org/10.1016/j.bbi.2020.04.060
https://doi.org/10.1002/jmv.25728
https://doi.org/10.1016/j.tins.2020.04.004
https://doi.org/10.1002/jmv.25915
https://doi.org/10.1002/jmv.25915
https://doi.org/10.1148/radiol.2020201187
https://doi.org/10.1148/radiol.2020201187
https://doi.org/10.1136/jnnp-2020-323586
https://doi.org/10.1016/j.hrcr.2020.04.015
https://doi.org/10.1111/joim.13089
https://doi.org/10.1111/joim.13089
https://doi.org/10.1007/s00701-020-04374-x
https://doi.org/10.1016/S2215-0366(20)30203-0
https://doi.org/10.1016/S2215-0366(20)30203-0
https://doi.org/10.1212/wnl.0000000000009829
https://doi.org/10.1212/wnl.0000000000009829
https://doi.org/10.1056/NEJMc2009191
https://doi.org/10.1038/s41591-020-0916-2


44. Paterson, R. W. et al. The emerging spectrum of COVID-19 neurology: clinical,
radiological and laboratory findings. Brain. https://doi.org/10.1093/brain/
awaa240 (2020).

45. Antonini, A., Leta, V., Teo, J. & Chaudhuri, K. R. Outcome of Parkinson’s disease
patients affected by COVID-19. Mov. Disord. https://doi.org/10.1002/mds.28104
(2020).

46. Hainque, E., G., D. Rapid worsening in Parkinson’s disease may hide COVID-19
infection. Parkinsonism Relat. Disord. https://doi.org/10.1016/j.parkreldis.2020.05.008
(2020).

47. Fazzini, E., Fleming, J. & Fahn, S. Cerebrospinal fluid antibodies to coronavirus in
patients with Parkinson’s disease. Mov. Disord. 7, 153–158 (1992).

48. Arabi, Y. M. et al. Severe neurologic syndrome associated with Middle East
respiratory syndrome corona virus (MERS-CoV). Infection 43, 495–501 (2015).

49. Yeh, E. A., Collins, A., Cohen, M. E., Duffner, P. K. & Faden, H. Detection of
coronavirus in the central nervous system of a child with acute disseminated
encephalomyelitis. Pediatrics 113, e73–e76 (2004).

50. Nilsson, A., Edner, N., Albert, J. & Ternhag, A. Fatal encephalitis associated with
coronavirus OC43 in an immunocompromised child. Infect. Dis. (Lond.) 52,
419–422 (2020).

51. Jang, H., Boltz, D. A., Webster, R. G. & Smeyne, R. J. Viral parkinsonism. Biochim.
Biophys. Acta 1792, 714–721 (2009).

52. Dourmashkin, R. R., Dunn, G., Castano, V. & McCall, S. A. Evidence for an
enterovirus as the cause of encephalitis lethargica. BMC Infect. Dis. 12, 136
(2012).

53. Hoffman, L. A. & Vilensky, J. A. Encephalitis lethargica: 100 years after the epi-
demic. Brain 140, 2246–2251 (2017).

54. Limphaibool, N., Iwanowski, P., Holstad, M. J. V., Kobylarek, D. & Kozubski, W.
Infectious etiologies of parkinsonism: pathomechanisms and clinical implica-
tions. Front. Neurol. 10, 652 (2019).

55. Henry, J., Smeyne, R. J., Jang, H., Miller, B. & Okun, M. S. Parkinsonism and
neurological manifestations of influenza throughout the 20th and 21st cen-
turies. Parkinsonism Relat. Disord. 16, 566–571 (2010).

56. Houser, M. C. & Tansey, M. G. The gut-brain axis: is intestinal inflammation a
silent driver of Parkinson’s disease pathogenesis? NPJ Parkinson’s Dis. 3, 3 (2017).

57. Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev.
Virol. 3, 237–261 (2016).

58. Xu, X. et al. Evolution of the novel coronavirus from the ongoing Wuhan out-
break and modeling of its spike protein for risk of human transmission. Sci.
China Life Sci. 63, 457–460 (2020).

59. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and
is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e278
(2020).

60. Perrotta, F., Matera, M. G., Cazzola, M. & Bianco, A. Severe respiratory SARS-CoV2
infection: Does ACE2 receptor matter? Respir. Med. 168, 105996 (2020).

61. Wang, Q. et al. Structural and functional basis of SARS-CoV-2 entry by using
human ACE2. Cell. https://doi.org/10.1016/j.cell.2020.03.045 (2020).

62. Magrone, T., Magrone, M. & Jirillo, E. Focus on receptors for coronaviruses with
special reference to angiotensin-converting enzyme 2 as a potential drug Target
—a perspective. Endocr. Metab. Immune Disord. Drug Targets. https://doi.org/
10.2174/1871530320666200427112902 (2020).

63. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion
conformation. Science 367, 1260–1263 (2020).

64. Fantini, J., Di Scala, C., Chahinian, H. & Yahi, N. Structural and molecular mod-
elling studies reveal a new mechanism of action of chloroquine and hydroxy-
chloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents. https://doi.
org/10.1016/j.ijantimicag.2020.105960 (2020).

65. Milanetti, E., Miotto, M., Di Rienzo, L., Monti, M., Gosti, G. & Ruocco, G. In-Silico
evidence for two receptors based strategy of SARS-CoV-2. bioRxiv. Preprint at
https://doi.org/10.1101/2020.03.24.006197 (2020).

66. He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-
19. Nat. Med. 26, 672–675. https://doi.org/10.1038/s41591-020-0869-5 (2020).

67. Robson, B. Bioinformatics studies on a function of the SARS-CoV-2 spike gly-
coprotein as the binding of host sialic acid glycans. Comput. Biol. Med. 122,
103849 (2020).

68. Wasik, B. R., Barnard, K. N. & Parrish, C. R. Effects of sialic acid modifications on
virus binding and infection. Trends Microbiol. 24, 991–1001 (2016).

69. Albright, B. H., Simon, K. E., Pillai, M., Devlin, G. W. & Asokan, A. Modulation of
sialic acid dependence influences the central nervous system transduction
profile of adeno-associated viruses. J. Virol. https://doi.org/10.1128/jvi.00332-19
(2019).

70. Jeffers, S. A. et al. CD209L (L-SIGN) is a receptor for severe acute respiratory
syndrome coronavirus. Proc. Natl Acad. Sci. USA 101, 15748–15753 (2004).

71. Ding, Y. et al. Organ distribution of severe acute respiratory syndrome (SARS)
associated coronavirus (SARS-CoV) in SARS patients: implications for patho-
genesis and virus transmission pathways. J. Pathol. 203, 622–630 (2004).

72. Gu, J. et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med.
202, 415–424 (2005).

73. Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med.
https://doi.org/10.1056/NEJMc2011400 (2020).

74. Wichmann, D. et al. Autopsy findings and venous thromboembolism in patients
with COVID-19. Ann. Intern. Med. https://doi.org/10.7326/M20-2003 (2020)

75. Sepehrinezhad, A., Shahbazi, A. & Negah, S. S. COVID-19 virus may have neu-
roinvasive potential and cause neurological complications: a perspective review.
J. Neurovirol. https://doi.org/10.1007/s13365-020-00851-2 (2020).

76. Natoli, S., Oliveira, V., Calabresi, P., Maia, L. F. & Pisani, A. Does SARS-Cov-2 invade
the brain? Translational lessons from animal models. Eur. J. Neurol. https://doi.
org/10.1111/ene.14277 (2020).

77. Netland, J., Meyerholz, D. K., Moore, S., Cassell, M. & Perlman, S. Severe acute
respiratory syndrome coronavirus infection causes neuronal death in the
absence of encephalitis in mice transgenic for human ACE2. J. Virol. 82,
7264–7275 (2008).

78. Li, K. et al. Middle East respiratory syndrome coronavirus causes multiple organ
damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4.
J. Infect. Dis. 213, 712–722 (2016).

79. Li, Y. C., Bai, W. Z., Hirano, N., Hayashida, T. & Hashikawa, T. Coronavirus infection
of rat dorsal root ganglia: ultrastructural characterization of viral replication,
transfer, and the early response of satellite cells. Virus Res. 163, 628–635 (2012).

80. Li, Y. C. et al. Neurotropic virus tracing suggests a membranous-coating-
mediated mechanism for transsynaptic communication. J. Comp. Neurol. 521,
203–212 (2013).

81. Andries, K. & Pensaert, M. B. Immunofluorescence studies on the pathogenesis
of hemagglutinating encephalomyelitis virus infection in pigs after oronasal
inoculation. Am. J. Vet. Res. 41, 1372–1378 (1980).

82. Chasey, D. & Alexander, D. J. Morphogenesis of avian infectious bronchitis virus
in primary chick kidney cells. Arch. Virol. 52, 101–111 (1976).

83. Pan, W. et al. Cytokine signaling modulates blood-brain barrier function. Curr.
Pharm. Des. 17, 3729–3740 (2011).

84. Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, maintenance and
disruption of the blood-brain barrier. Nat. Med. 19, 1584–1596 (2013).

85. Muldoon, L. L. et al. Immunologic privilege in the central nervous system and
the blood-brain barrier. J. Cereb. Blood. Flow. Metab. 33, 13–21 (2013).

86. Pilotto, A. et al. Steroid-responsive encephalitis in Covid-19 disease. Ann. Neurol.
https://doi.org/10.1002/ana.25783 (2020).

87. Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme. Cloning
and functional expression as a captopril-insensitive carboxypeptidase. J. Biol.
Chem. 275, 33238–33243 (2000).

88. Jia, H. P. et al. Ectodomain shedding of angiotensin converting enzyme 2 in human
airway epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L84–L96 (2009).

89. Xiao, F. et al. Characterization of angiotensin-converting enzyme 2 ectodomain
shedding from mouse proximal tubular cells. PLoS ONE 9, e85958 (2014).

90. Li, M. Y., Li, L., Zhang, Y. & Wang, X. S. Expression of the SARS-CoV-2 cell receptor
gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 9, 45 (2020).

91. Sluimer, J. C. et al. Angiotensin-converting enzyme 2 (ACE2) expression and
activity in human carotid atherosclerotic lesions. J. pathol. 215, 273–279 (2008).

92. Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for
SARS coronavirus. A first step in understanding SARS pathogenesis. J. pathol.
203, 631–637 (2004).

93. Doobay, M. F. et al. Differential expression of neuronal ACE2 in transgenic mice
with overexpression of the brain renin-angiotensin system. Am. J. Physiol. Regul.
Integr. Comp. Physiol. 292, R373–R381 (2007).

94. Gowrisankar, Y. V. & Clark, M. A. Angiotensin II regulation of angiotensin-
converting enzymes in spontaneously hypertensive rat primary astrocyte cul-
tures. J. Neurochem. 138, 74–85 (2016).

95. Xia, H. & Lazartigues, E. Angiotensin-converting enzyme 2: central regulator for
cardiovascular function. Curr. Hypertens. Rep. 12, 170–175 (2010).

96. Xia, H., Sriramula, S., Chhabra, K. H. & Lazartigues, E. Brain angiotensin-
converting enzyme type 2 shedding contributes to the development of neu-
rogenic hypertension. Circ. res. 113, 1087–1096 (2013).

97. Martin, D., Xu, J., Porretta, C. & Nichols, C. D. Neurocytometry: flow cytometric
sorting of specific neuronal populations from human and rodent brain. ACS
Chem. Neurosci. 8, 356–367 (2017).

98. Zhang, R. et al. Role of HIF-1alpha in the regulation ACE and ACE2 expression in
hypoxic human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell
Mol. Physiol. 297, L631–L640 (2009).

99. Ziegler, C. G. K. et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated
Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets
across Tissues. Cell. https://doi.org/10.1016/j.cell.2020.04.035 (2020).

100. Xu, J., Sriramula, S. & Lazartigues, E. Excessive glutamate stimulation impairs
ACE2 activity through ADAM17-mediated shedding in cultured cortical neurons.
Cell Mol. Neurobiol. 38, 1235–1243 (2018).

D. Sulzer et al.

8

npj Parkinson’s Disease (2020)    18 Published in partnership with the Parkinson’s Foundation

https://doi.org/10.1093/brain/awaa240
https://doi.org/10.1093/brain/awaa240
https://doi.org/10.1002/mds.28104
https://doi.org/10.1016/j.parkreldis.2020.05.008
https://doi.org/10.1016/j.cell.2020.03.045
https://doi.org/10.2174/1871530320666200427112902
https://doi.org/10.2174/1871530320666200427112902
https://doi.org/10.1016/j.ijantimicag.2020.105960
https://doi.org/10.1016/j.ijantimicag.2020.105960
https://doi.org/10.1101/2020.03.24.006197
https://doi.org/10.1038/s41591-020-0869-5
https://doi.org/10.1128/jvi.00332-19
https://doi.org/10.1056/NEJMc2011400
https://doi.org/10.7326/M20-2003
https://doi.org/10.1007/s13365-020-00851-2
https://doi.org/10.1111/ene.14277
https://doi.org/10.1111/ene.14277
https://doi.org/10.1002/ana.25783
https://doi.org/10.1016/j.cell.2020.04.035


101. Chen, R. et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2
in human and mouse brain. bioRxiv, 2020.2004.2007.030650. Preprint at https://
doi.org/10.1101/2020.04.07.030650 (2020).

102. Muus, C. et al. Integrated analyses of single-cell atlases reveal age, gender, and
smoking status associations with cell type-specific expression of mediators of
SARS-CoV-2 viral entry and highlights inflammatory programs in putative target
cells. bioRxiv, 2020.2004.2019.049254. Preprint at https://doi.org/10.1101/
2020.04.19.049254 (2020).

103. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for
drug repurposing. Nature. https://doi.org/10.1038/s41586-020-2286-9 (2020).

104. Lippi, A., Domingues, R., Setz, C., Outeiro, T. F. & Krisko, A. SARS-CoV-2: at the
crossroad between aging and neurodegeneration. Mov. Disord. https://doi.org/
10.1002/mds.28084 (2020).

105. Ezzat, K. et al. The viral protein corona directs viral pathogenesis and amyloid
aggregation. Nat. Commun. 10, 2331 (2019).

106. Tulisiak, C. T., Mercado, G., Peelaerts, W., Brundin, L. & Brundin, P. Can infections
trigger alpha-synucleinopathies? Prog. Mol. Biol. Transl. Sci. 168, 299–322 (2019).

107. Massey, A. R. & Beckham, J. D. Alpha-synuclein, a novel viral restriction factor
hiding in plain sight. DNA Cell. Biol. 35, 643–645 (2016).

108. Lechien, J. R. et al. Olfactory and gustatory dysfunctions as a clinical presenta-
tion of mild-to-moderate forms of the coronavirus disease (COVID-19): a mul-
ticenter European study. Eur. Arch. Otorhinolaryngol. https://doi.org/10.1007/
s00405-020-05965-1 (2020).

109. Heinzel, S. et al. Update of the MDS research criteria for prodromal Parkinson’s
disease. Mov. Disord. 34, 1464–1470 (2019).

110. Kotecha, A. M., Corrêa, A. D. C., Fisher, K. M. & Rushworth, J. V. Olfactory dys-
function as a global biomarker for sniffing out Alzheimer’s disease: a meta-
analysis. Biosensors. https://doi.org/10.3390/bios8020041 (2018).

111. Barresi, M. et al. Evaluation of olfactory dysfunction in neurodegenerative dis-
eases. J. Neurol. Sci. 323, 16–24 (2012).

112. Abderrahmane, A. et al. Can the 2019 novel coronavirus cause Parkinson’s
disease? Mov. Disord. https://doi.org/10.1002/mds.28118 (2020).

113. Giacomelli, A. et al. Self-reported olfactory and taste disorders in SARS-CoV-2
patients: a cross-sectional study. Clin. Infect. Dis. https://doi.org/10.1093/cid/
ciaa330 (2020).

114. Lovato, A. & de Filippis, C. Clinical presentation of COVID-19: a systematic review
focusing on upper airway symptoms. Ear Nose Throat J. https://doi.org/10.1177/
0145561320920762 (2020).

115. Ponsen, M. M. et al. Idiopathic hyposmia as a preclinical sign of Parkinson’s
disease. Ann. Neurol. 56, 173–181 (2004).

116. Haddadi, K., Ghasemian, R. & Shafizad, M. Basal ganglia involvement and altered
mental status: a unique neurological manifestation of coronavirus disease 2019.
Cureus 12, e7869 (2020).

117. Guttman, M. Receptors in the basal ganglia. Can. J. Neurol. Sci. 14, 395–401
(1987).

118. Goldstein, D. S. Dysautonomia in Parkinson disease. Compr. Physiol. 4, 805–826
(2014).

119. Méndez-Guerrero, A. et al. Acute hypokinetic-rigid syndrome following SARS-
CoV-2 infection. Neurology. https://doi.org/10.1212/wnl.0000000000010282
(2020).

120. Rodriguez-Perez, A. I. et al. Angiotensin type 2 receptors: Role in aging and
neuroinflammation in the substantia nigra. Brain. Behav. Immun. https://doi.org/
10.1016/j.bbi.2019.12.011 (2019).

121. Joglar, B. et al. The inflammatory response in the MPTP model of Parkinson’s
disease is mediated by brain angiotensin: relevance to progression of the dis-
ease. J. Neurochem. 109, 656–669 (2009).

122. Garretti, F., Agalliu, D., Lindestam Arlehamn, C. S., Sette, A. & Sulzer, D. Auto-
immunity in Parkinson’s Disease: the role of α-synuclein-specific T cells. Front.
Immunol. 10, 303 (2019).

123. Lindestam Arlehamn, C. S., Garretti, F., Sulzer, D. & Sette, A. Roles for the
adaptive immune system in Parkinson’s and Alzheimer’s diseases. Curr. Opin.
Immunol. 59, 115–120 (2019).

124. Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering
the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).

125. Williams, G. P. et al. T cell infiltration in both human multiple system atrophy and
a novel mouse model of the disease. Acta Neuropathol. 139, 855–874 (2020).

126. Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey
matter degeneration. Nature 566, 503–508 (2019).

127. Gagne, J. J. & Power, M. C. Anti-inflammatory drugs and risk of Parkinson dis-
ease: a meta-analysis. Neurology 74, 995–1002 (2010).

128. Jang, H. et al. Highly pathogenic H5N1 influenza virus can enter the central
nervous system and induce neuroinflammation and neurodegeneration. Proc.
Natl Acad. Sci. USA 106, 14063–14068 (2009).

129. Jang, H. et al. Inflammatory effects of highly pathogenic H5N1 influenza virus
infection in the CNS of mice. J. Neurosci. 32, 1545–1559 (2012).

130. Bantle, C. M. et al. Infection with mosquito-borne alphavirus induces selective
loss of dopaminergic neurons, neuroinflammation and widespread protein
aggregation. NPJ Parkinsons Dis. 5, 20 (2019).

131. Kobasa, D. et al. Enhanced virulence of influenza A viruses with the hae-
magglutinin of the 1918 pandemic virus. Nature 431, 703–707 (2004).

132. Kobasa, D. et al. Aberrant innate immune response in lethal infection of
macaques with the 1918 influenza virus. Nature 445, 319–323 (2007).

133. Miyamoto, K. et al. Systemic inflammatory response syndrome and prolonged
hypoperfusion lesions in an infant with respiratory syncytial virus encephalo-
pathy. J. Infect. Chemother. 19, 978–982 (2013).

134. Sadasivan, S., Sharp, B., Schultz-Cherry, S. & Smeyne, R. Synergistic effects of
influenza and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can be
eliminated by the use of influenza therapeutics: experimental evidence for the
multi-hit hypothesis. NPJ Parkinsons Dis. https://doi.org/10.1038/s41531-017-
0019-z (2017).

135. Banks, W. A., Kastin, A. J. & Broadwell, R. D. Passage of cytokines across the
blood-brain barrier. Neuroimmunomodulation 2, 241–248 (1995).

136. Mohanty, S. et al. Prolonged proinflammatory cytokine production in mono-
cytes modulated by interleukin 10 after influenza vaccination in older adults. J.
Infect. Dis. 211, 1174–1184 (2015).

137. Bird, N. L. et al. Oseltamivir prophylaxis reduces inflammation and facilitates
establishment of cross-strain protective T cell memory to influenza viruses. PLoS
ONE 10, e0129768 (2015).

138. Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet
395, 1417–1418 (2020).

139. Barton, L. M., Duval, E. J., Stroberg, E., Ghosh, S. & Mukhopadhyay, S. COVID-19
autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 153, 725–733 (2020).

140. Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory
distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).

141. Tian, S. et al. Pulmonary pathology of early-phase 2019 novel coronavirus
(COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 15,
700–704 (2020).

142. Adachi, T. et al. Clinicopathologic and immunohistochemical findings from
autopsy of patient with COVID-19, Japan. Emerg. Infect. Dis. https://doi.org/
10.3201/eid2609.201353 (2020).

143. Menter, T. et al. Post-mortem examination of COVID19 patients reveals diffuse
alveolar damage with severe capillary congestion and variegated findings of
lungs and other organs suggesting vascular dysfunction. Histopathology. https://
doi.org/10.1111/his.14134 (2020).

144. Cilia, R. et al. Effects of COVID-19 on Parkinson’s disease clinical features: a
community-based case-control study. Mov. Disord. https://doi.org/10.1002/
mds.28170 (2020).

145. Fasano, A. et al. COVID-19 in Parkinson’s disease patients living in Lombardy,
Italy. Mov. Disord. https://doi.org/10.1002/mds.28176 (2020).

146. Papa, S. M. et al. Impact of the COVID-19 pandemic on Parkinson’s disease and
movement disorders. Mov. Disord. https://doi.org/10.1002/mds.28067 (2020).

147. Stoessl, A. J., Bhatia, K. P. & Merello, M. Movement disorders in the world of
COVID-19. Mov. Disord. Clin. Pract. 7, 355–356 (2020).

148. Bhidayasiri, R., Virameteekul, S., Kim, J. M., Pal, P. K. & Chung, S. J. COVID-19: an
early review of its global impact and considerations for Parkinson’s Disease
Patient Care. J. Mov. Disord. https://doi.org/10.14802/jmd.20042 (2020).

149. Schirinzi, T. et al. Self-reported needs of patients with Parkinson’s disease during
COVID-19 emergency in Italy. Neurol. Sci. https://doi.org/10.1007/s10072-020-
04442-1 (2020).

150. Tipton, P. W. & Wszolek, Z. K. What can Parkinson’s disease teach us about
COVID-19? Neurol. Neurochir. Pol. 54, 204–206 (2020).

151. Fasano, A. et al. Management of advanced therapies in Parkinson’s disease
patients in times of humanitarian crisis: the COVID-19 experience. Mov. Disord.
Clin. Pract. 7, 361–372 (2020).

152. Baille, G. et al. Dyspnea: an underestimated symptom in Parkinson’s disease.
Parkinsonism Relat. Disord. 60, 162–166 (2019).

153. Prasad, S. et al. Parkinson’s Disease and COVID-19: perceptions and implications
in patients and caregivers. Mov. Disord. https://doi.org/10.1002/mds.28088
(2020).

154. Roland, K. P., Cornett, K. M., Theou, O., Jakobi, J. M. & Jones, G. R. Concurrence of
Frailty and Parkinson’s disease. J. Frailty Aging 1, 123–127 (2012).

155. Torsney, K. M. & Forsyth, D. Respiratory dysfunction in Parkinson’s disease. J. R.
Coll. Physicians Edinb. 47, 35–39 (2017).

156. McCray, P. B. Jr. et al. Lethal infection of K18-hACE2 mice infected with severe
acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).

157. Matsuda, K. et al. The vagus nerve is one route of transneural invasion for
intranasally inoculated influenza a virus in mice. Vet. Pathol. 41, 101–107
(2004).

158. Jones, J. F. Epstein-Barr virus and the chronic fatigue syndrome: a short review.
Microbiol. Sci. 5, 366–369 (1988).

D. Sulzer et al.

9

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2020)    18 

https://doi.org/10.1101/2020.04.07.030650
https://doi.org/10.1101/2020.04.07.030650
https://doi.org/10.1101/2020.04.19.049254
https://doi.org/10.1101/2020.04.19.049254
https://doi.org/10.1038/s41586-020-2286-9
https://doi.org/10.1002/mds.28084
https://doi.org/10.1002/mds.28084
https://doi.org/10.1007/s00405-020-05965-1
https://doi.org/10.1007/s00405-020-05965-1
https://doi.org/10.3390/bios8020041
https://doi.org/10.1002/mds.28118
https://doi.org/10.1093/cid/ciaa330
https://doi.org/10.1093/cid/ciaa330
https://doi.org/10.1177/0145561320920762
https://doi.org/10.1177/0145561320920762
https://doi.org/10.1212/wnl.0000000000010282
https://doi.org/10.1016/j.bbi.2019.12.011
https://doi.org/10.1016/j.bbi.2019.12.011
https://doi.org/10.1038/s41531-017-0019-z
https://doi.org/10.1038/s41531-017-0019-z
https://doi.org/10.3201/eid2609.201353
https://doi.org/10.3201/eid2609.201353
https://doi.org/10.1111/his.14134
https://doi.org/10.1111/his.14134
https://doi.org/10.1002/mds.28170
https://doi.org/10.1002/mds.28170
https://doi.org/10.1002/mds.28176
https://doi.org/10.1002/mds.28067
https://doi.org/10.14802/jmd.20042
https://doi.org/10.1007/s10072-020-04442-1
https://doi.org/10.1007/s10072-020-04442-1
https://doi.org/10.1002/mds.28088


159. Guan, W. J. et al. Clinical characteristics of coronavirus disease 2019 in China. N.
Engl. J. Med. 382, 1708–1720 (2020).

160. Lazcano-Ocampo, C. et al. Identifying and responding to fatigue and apathy in
Parkinson’s disease: a review of current practice. Expert Rev. Neurother. 20,
477–495 (2020).

161. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus
in Wuhan, China. Lancet 395, 497–506 (2020).

162. Smieszek, S. P., Przychodzen, B. P. & Polymeropoulos, M. H. Amantadine
disrupts lysosomal gene expression: a hypothesis for COVID19 treatment.
Int. J. Antimicrob. Agents. https://doi.org/10.1016/j.ijantimicag.2020.106004
(2020).

163. Martinez-Martin, P. et al. Impact of fatigue in Parkinson’s disease: the fatigue
impact scale for daily use (D-FIS). Qual. Life Res. 15, 597–606 (2006).

164. Helmich, R. C. & Bloem, B. R. The Impact of the COVID-19 pandemic on Par-
kinson’s disease: hidden sorrows and emerging opportunities. J. Parkinsons Dis.
10, 351–354 (2020).

165. van Wamelen, D. J. Wan, Y. M., Chaudhuri, K. R. & Jenner, P. Stress and cortisol in
Parkinson’s disease. Int. Rev. Neurobiol. https://doi.org/10.1016/bs.irn.2020.01.005
(2020).

ACKNOWLEDGEMENTS
We thank David Standaert and Ted Dawson for commentary and suggestions. We
thank Ori Lieberman for the proofreading of the manuscript. Figure 1 was created with
BioRender.com. The authors acknowledge the National Institute for Health Research
(NIHR) London South Clinical Research Network and the NIHR Biomedical Research
Centre. This article represents independent collaborative research part funded by the
NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation
Trust and King’s College London. The views expressed are those of the author(s) and
not necessarily those of the NHS, the NIHR, or the Department of Health.

AUTHOR CONTRIBUTIONS
K.R.C. and A.A. conceived of the idea. K.R.C., D.S., A.A., and V.L. wrote the first draft of
the paper and revised subsequent drafts. A.N., R.J.S., J.E.G., O.A., L.Z., A.S., L.B., O.M.,
E.M., A.S.H., Y.X., and S.F. contributed to conception, critical review, and revision of
paper; all authors approved the final draft for submission.

COMPETING INTERESTS
D.S. and K.R.C. are Editors in Chief for npj Parkinson’s Disease. E.M. is Associate Editor
for npj Parkinson’s Disease. A.A has received compensation for consultancy and
speaker related activities from UCB, Boehringer Ingelheim, AbbVie, Zambon, Bial, Ever
Pharma, Neuroderm, Theravance Biopharma, Biogen, outside the submitted work; he
receives research support from Chiesi Pharmaceuticals, Lundbeck, Horizon 2020 -
PD_Pal Grant 825785, Ministry of Education University and Research (MIUR) Grant
ARS01_01081, Cariparo Foundation, outside the submitted work. He serves as
consultant for Boehringer–Ingelheim for legal cases on pathological gambling,
outside the submitted work. V.L., A.N., R.J.S., J.E.G., O.A., L.Z., A.S., L.B., O.M., A.S.H., Y.X.,
and S.F. declare that there are no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to K.R.C.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

D. Sulzer et al.

10

npj Parkinson’s Disease (2020)    18 Published in partnership with the Parkinson’s Foundation

https://doi.org/10.1016/j.ijantimicag.2020.106004
https://doi.org/10.1016/bs.irn.2020.01.005
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside
	Let us know how access to this document benefits you
	Recommended Citation
	Authors

	COVID-19 and possible links with Parkinson&#x02019;s disease and parkinsonism: from bench to bedside
	Introduction
	Symptoms
	Historical aspects of viruses and parkinsonism
	SARS-CoV-2 receptors and cellular uptake
	Potential neurotropism of COVID-19 virus
	Presence of SARS-CoV-2 receptors in the brain
	COVID-19 and the possibility of a post-viral parkinsonism: clinical and molecular rationales
	The need for detailed autopsy studies
	The clinical perspective
	Conclusions
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


