88 research outputs found
SARS-CoV-2 requires acidic pH to infect cells
Publisher Copyright: Copyright © 2022 the Author(s). Published by PNAS.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) proteinâcatalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.Peer reviewe
Identification of d -arabinan-degrading enzymes in mycobacteria
Bacterial cell growth and division require the coordinated action of enzymes that synthesize and degrade cell wall polymers. Here, we identify enzymes that cleave the D-arabinan core of arabinogalactan, an unusual component of the cell wall of Mycobacterium tuberculosis and other mycobacteria. We screened 14 human gut-derived Bacteroidetes for arabinogalactan-degrading activities and identified four families of glycoside hydrolases with activity against the D-arabinan or D-galactan components of arabinogalactan. Using one of these isolates with exo-D-galactofuranosidase activity, we generated enriched D-arabinan and used it to identify a strain of Dysgonomonas gadei as a D-arabinan degrader. This enabled the discovery of endo- and exo-acting enzymes that cleave D-arabinan, including members of the DUF2961 family (GH172) and a family of glycoside hydrolases (DUF4185/GH183) that display endo-D-arabinofuranase activity and are conserved in mycobacteria and other microbes. Mycobacterial genomes encode two conserved endo-D-arabinanases with different preferences for the D-arabinan-containing cell wall components arabinogalactan and lipoarabinomannan, suggesting they are important for cell wall modification and/or degradation. The discovery of these enzymes will support future studies into the structure and function of the mycobacterial cell wall
Synthetic Multivalent Ligands as Probes of Signal Transduction
Cell-surface receptors acquire information from the extracellular environment and coordinate intracellular responses. Many receptors do not operate as individual entities, but rather as part of dimeric or oligomeric complexes. Coupling the functions of multiple receptors may endow signaling pathways with the sensitivity and malleability required to govern cellular responses. Moreover, multireceptor signaling complexes may provide a means of spatially segregating otherwise degenerate signaling cascades. Understanding the mechanisms, extent, and consequences of receptor co-localization and interreceptor communication is critical; chemical synthesis can provide compounds to address the role of receptor assembly in signal transduction. Multivalent ligands can be generated that possess a variety of sizes, shapes, valencies, orientations, and densities of binding elements. This Review focuses on the use of synthetic multivalent ligands to characterize receptor function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50669/1/2348_ftp.pd
Clinical effectiveness and patient perspectives of different treatment strategies for tics in children and adolescents with Tourette syndrome: a systematic review and qualitative analysis
Background: Tourette syndrome (TS) is a neurodevelopmental condition characterised by chronic motor and vocal tics affecting up to 1% of school-age children and young people and is associated with significant distress and psychosocial impairment.
Objective: To conduct a systematic review of the benefits and risks of pharmacological, behavioural and physical interventions for tics in children and young people with TS (part 1) and to explore the experience of treatment and services from the perspective of young people with TS and their parents (part 2).
Data Sources: For the systematic reviews (parts 1 and 2), mainstream bibliographic databases, The Cochrane Library, education, social care and grey literature databases were searched using subject headings and text words for tic* and Tourette* from database inception to January 2013.
Review/research methods: For part 1, randomised controlled trials and controlled before-and-after studies of pharmacological, behavioural or physical interventions in children or young people (aged <â18 years) with TS or chronic tic disorder were included. Mixed studies and studies in adults were considered as supporting evidence. Risk of bias associated with each study was evaluated using the Cochrane tool. When there was sufficient data, random-effects meta-analysis was used to synthesize the evidence and the quality of evidence for each outcome was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. For part 2, qualitative studies and survey literature conducted in populations of children/young people with TS or their carers or in health professionals with experience of treating TS were included in the qualitative review. Results were synthesized narratively. In addition, a national parent/carer survey was conducted via the Tourettes Action website. Participants included parents of children and young people with TS aged under 18 years. Participants (young people with TS aged 10â17 years) for the in-depth interviews were recruited via a national survey and specialist Tourettes clinics in the UK.
Results: For part 1, 70 studies were included in the quantitative systematic review. The evidence suggested that for treating tics in children and young people with TS, antipsychotic drugs [standardised mean difference (SMD) â0.74, 95% confidence interval (CI) â1.08 to â0.41; nâ=â75] and noradrenergic agents [clonidine (DixaritÂź, Boehringer Ingelheim) and guanfacine: SMD â0.72, 95% CI â1.03 to â0.40; nâ=â164] are effective in the short term. There was little difference among antipsychotics in terms of benefits, but adverse effect profiles do differ. Habit reversal training (HRT)/comprehensive behavioural intervention for tics (CBIT) was also shown to be effective (SMD â0.64, 95% CI â0.99 to â0.29; nâ=â133). For part 2, 295 parents/carers of children and young people with TS contributed useable survey data. Forty young people with TS participated in in-depth interviews. Four studies were in the qualitative review. Key themes were difficulties in accessing specialist care and behavioural interventions, delay in diagnosis, importance of anxiety and emotional symptoms, lack of provision of information to schools and inadequate information regarding medication and adverse effects.
Limitations: The number and quality of clinical trials is low and this downgrades the strength of the evidence and conclusions.
Conclusions: Antipsychotics, noradrenergic agents and HRT/CBIT are effective in reducing tics in children and young people with TS. The balance of benefits and harms favours the most commonly used medications: risperidone (RisperdalÂź, Janssen), clonidine and aripiprazole (AbilifyÂź, Otsuka). Larger and better-conducted trials addressing important clinical uncertainties are required. Further research is needed into widening access to behavioural interventions through use of technology including mobile applications (âappsâ) and video consultation.
Study registration: This study is registered as PROSPERO CRD42012002059
In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model
<p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is the fourth leading cause of tumour death in the western world. However, appropriate tumour models are scarce. Here we present a syngeneic murine pancreatic cancer model using 7 Tesla MRI and evaluate its clinical relevance and applicability.</p> <p>Methods</p> <p>6606PDA murine pancreatic cancer cells were orthotopically injected into the pancreatic head. Liver metastases were induced through splenic injection. Animals were analyzed by MRI three and five weeks following injection. Tumours were detected using T2-weighted high resolution sequences. Tumour volumes were determined by callipers and MRI. Liver metastases were analyzed using gadolinium-EOB-DTPA and T1-weighted 3D-Flash sequences. Tumour blood flow was measured using low molecular gadobutrol and high molecular gadolinium-DTPA.</p> <p>Results</p> <p>MRI handling and applicability was similar to human systems, resolution as low as 0.1 mm. After 5 weeks tumour volumes differed significantly (p < 0.01) when comparing calliper measurments (n = 5, mean 1065 mm<sup>3</sup>+/-243 mm<sup>3</sup>) with MRI (mean 918 mm<sup>3</sup>+/-193 mm<sup>3</sup>) with MRI being more precise. Histology (n = 5) confirmed MRI tumour measurements (mean size MRI 38.5 mm<sup>2</sup>+/-22.8 mm<sup>2 </sup>versus 32.6 mm<sup>2</sup>+/-22.6 mm<sup>2 </sup>(histology), p < 0,0004) with differences due to fixation and processing of specimens. After splenic injection all mice developed liver metastases with a mean of 8 metastases and a mean volume of 173.8 mm<sup>3</sup>+/-56.7 mm<sup>3 </sup>after 5 weeks. Lymphnodes were also easily identified. Tumour accumulation of gadobutrol was significantly (p < 0.05) higher than gadolinium-DTPA. All imaging experiments could be done repeatedly to comply with the 3R-principle thus reducing the number of experimental animals.</p> <p>Conclusions</p> <p>This model permits monitoring of tumour growth and metastasis formation in longitudinal non-invasive high-resolution MR studies including using contrast agents comparable to human pancreatic cancer. This multidisciplinary environment enables radiologists, surgeons and physicians to further improve translational research and therapies of pancreatic cancer.</p
Chemical Approaches To Perturb, Profile, and Perceive Glycans
Glycosylation is an essential form of post-translational modification that regulates intracellular and extracellular processes. Regrettably, conventional biochemical and genetic methods often fall short for the study of glycans, because their structures are often not precisely defined at the genetic level. To address this deficiency, chemists have developed technologies to perturb glycan biosynthesis, profile their presentation at the systems level, and perceive their spatial distribution. These tools have identified potential disease biomarkers and ways to monitor dynamic changes to the glycome in living organisms. Still, glycosylation remains the underexplored frontier of many biological systems. In this Account, we focus on research in our laboratory that seeks to transform the study of glycan function from a challenge to routine practice
Coralline Algae in a Changing Mediterranean Sea: How Can We Predict Their Future, if We Do Not Know Their Present?
In this review we assess the state of knowledge for the coralline algae of the
Mediterranean Sea, a group of calcareous seaweeds imperfectly known and considered
highly vulnerable to long-term climate change. Corallines have occurred in the
Mediterranean area for âŒ140 My and are well-represented in the subsequent fossil
record; for some species currently common the fossil documentation dates back to
the Oligocene, with a major role in the sedimentary record of some areas. Some
Mediterranean corallines are key ecosystem engineers that produce or consolidate
biogenic habitats (e.g., coralligenous concretions, Lithophyllum byssoides rims, rims of
articulated corallines, maerl/rhodolith beds). Although bioconstructions built by corallines
exist virtually in every sea, in the Mediterranean they reach a particularly high spatial
and bathymetric extent (coralligenous concretions alone are estimated to exceed 2,700
km2 in surface). Overall, composition, dynamics and responses to human disturbances
of coralline-dominated communities have been well-studied; except for a few species,
however, the biology of Mediterranean corallines is poorly known. In terms of diversity,
60 species of corallines are currently reported from the Mediterranean. This number,
however, is based on morphological assessments and recent studies incorporating
molecular data suggest that the correct estimate is probably much higher. The responses
of Mediterranean corallines to climate change have been the subject of several recent
studies that documented their tolerance/sensitivity to elevated temperatures and pCO2.
These investigations have focused on a few species and should be extended to
a wider taxonomic set
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transientâs position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Multi-messenger Observations of a Binary Neutron Star Merger
On 2017 August 17 a binary neutron star coalescence candidate (later
designated GW170817) with merger time 12:41:04 UTC was observed through
gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray
burst (GRB 170817A) with a time delay of ⌠1.7 {{s}} with respect to
the merger time. From the gravitational-wave signal, the source was
initially localized to a sky region of 31 deg2 at a
luminosity distance of {40}-8+8 Mpc and with
component masses consistent with neutron stars. The component masses
were later measured to be in the range 0.86 to 2.26 {M}ÈŻ
. An extensive observing campaign was launched across the
electromagnetic spectrum leading to the discovery of a bright optical
transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC
4993 (at ⌠40 {{Mpc}}) less than 11 hours after the merger by the
One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
optical transient was independently detected by multiple teams within an
hour. Subsequent observations targeted the object and its environment.
Early ultraviolet observations revealed a blue transient that faded
within 48 hours. Optical and infrared observations showed a redward
evolution over âŒ10 days. Following early non-detections, X-ray and
radio emission were discovered at the transientâs position ⌠9
and ⌠16 days, respectively, after the merger. Both the X-ray and
radio emission likely arise from a physical process that is distinct
from the one that generates the UV/optical/near-infrared emission. No
ultra-high-energy gamma-rays and no neutrino candidates consistent with
the source were found in follow-up searches. These observations support
the hypothesis that GW170817 was produced by the merger of two neutron
stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and
a kilonova/macronova powered by the radioactive decay of r-process
nuclei synthesized in the ejecta.</p
- âŠ