1,699 research outputs found

    Is Gaia endothermic?

    Get PDF
    Geological evidence suggests that Gaia is endothermic: her body temperature has varied, but within limits; there has been no runaway greenhouse like Venus, nor deep freeze like Mars. This paper presents a hypothesis that the Earth's climate has been ameliorated by living organisms: they have served either as heaters or air-conditioners, and their ecological tolerance is the sensor of Gaia's thermostat. At the beginning, 3.8 or 3.5 Ga ago, only anaerobic autotrophs capable of tolerating high temperatures thinned out the atmospheric CO2 through carbon fixation. Fossil organic carbon was utilized by anaerobic heterotrophs to reinforce the effectiveness of the late Archean greenhouse, when solar luminosity was weaker than it is now. With the increasing solar luminosity during early Proterozoic time, new life forms such as cyanobacteria evolved, removing CO2 from the atmosphere and storing it in stromatolitic carbonates. Over-eager cyanobacteria may have consumed too much greenhouse CO2 to cause glaciation. Their decline coincided in timing with the rise of the Ediacaran faunas which had no carbonate skeletons. The change in the mode of carbon-cycling may have started the warming trend after the Proterozoic glaciation. The Cambrian explosion was an event when skeletal eukaryotes usurped the function of prokaryotes in removing greenhouse CO2 through CaCO3 precipitation. With the evolution of land plants, coal-makers took over the ‘air-conditioning' duty. They over-did it, and Permo-Carboniferous glaciation ensued. After a wholesale turnover of the faunas and floras at the end of the Palaeozoic, more CO2 was released than fixed in early Mesozoic time. The warming trend reached its zenith in the early Cretaceous, when flowering trees and calcareous plankton began to flourish. The decline since then, with a temporary restoration during early Palaeogene time, could be a manifestation of the varying efficiency of extracting and burying carbon dioxide, in the form of inorganic and organic carbon. The relation of atmospheric CO2 and climatic variation is documented by study of air bubbles in ice cores. Yet there is also correlation to astronomical cycles. The latter seem to have triggered changes which are amplified by feedback mechanisms of carbon cyclin

    Obstruction theory for finite group actions

    Full text link

    「淸議報」登載の「佳人奇遇」について : 特にその譯者

    Get PDF

    Newman's theorem for pseudosubmersions

    Full text link

    Anti de Sitter quantum field theory and a new class of hypergeometric identities

    Full text link
    We use Anti-de Sitter quantum field theory to prove a new class of identities between hypergeometric functions related to the K\"all\'en-Lehmann representation of products of two Anti-de Sitter two-point functions. A rich mathematical structure emerges. We apply our results to study the decay of unstable Anti-de Sitter particles. The total amplitude is in this case finite and Anti-de Sitter invariant

    Complexity-entropy causality plane: a useful approach for distinguishing songs

    Get PDF
    Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.Comment: Accepted for publication in Physica

    A Miocene tectonic inversion in the Ionian Sea (Central Mediterranean): evidence from multi-channel seismic data

    Get PDF
    It is widely accepted that the Central and Eastern Mediterranean are remnants of the Neo-Tethys. However, the orientation and timing of spreading of this domain remain controversial. Here, we present time migrated and pre-stack depth migrated NW-SE oriented Archimede (1997) lines together with the PrisMed01 (1993) profile to constrain the evolution of the Ionian basin. Our interpretation allows us to identify a large-scale set of SW-NE striking reverse faults beneath the Ionian Abyssal Plain. These primarily NW vergent faults are characterized by a spacing comprised between 10 to 20 km and a dip ranging from 60 to 65{degree sign}. Following very recent paleogeographic reconstructions, we propose that the set of N{degree sign}55 features initially formed as normal faults during the NW-SE trending seafloor spreading of the Ionian basin after its late Triassic-early Jurassic rifting. Based on geometric comparisons with the intraplate deformation observed beneath the Central Indian Ocean, we show that the inherited oceanic normal faults were reactivated under compression as reverse faults. Well-developed Tortonian syntectonic basins developed NW of the major faults and the base of the Messinian evaporites (Mobile Unit) is slightly folded by the activity of the faults. We show that 3-4 km of total shortening occurs over a 80 km wide area beneath the Ionian Abyssal Plain, resulting in a bulk shortening of 3.5-5 %. We propose a link between the Tortonian-early Messinian inversion of the fault pattern and a plate tectonic reorganization prior to the main phase of back-arc opening of the Tyrrhenian domain
    corecore