181 research outputs found
Design and Simulation of Short Channel Si:HfO2 Ferroelectric Field Effect Transistor (FeFET)
Non-volatile memories using ferroelectric capacitors, known as Ferroelectric Random Access Memory (FRAM) have been studied for many years, but they suffer from loss of data during read out process. Ferroelectric Field Effect Transistors (FeFETs), which are based on ferroelectric gate oxide, have been of recent interest for non-volatile memory applications. The FeFETs utilize the polarization of the ferroelectric layer incorporated into the transistor gate stack to control the channel conductivity. Therefore, in FeFET devices, the read out process is non-destructive because it is only processed by measuring the resistivity in the channel region. The drain current-gate voltage (ID-VG) characteristics of FeFETs exhibit a voltage shift due to polarization hysteresis known as the memory window , an important figure of merit of a FeFET that provides a window for the read voltage. A dielectric layer between semiconductor layer and the ferroelectric is required to reduce charge injection effect, and to compensate lattice mismatch between the ferroelectric and the semiconductor. In addition, a non-ferroelectric interfacial layer may form between the semiconductor and the ferroelectric layer. However, this dielectric layer causes a voltage drop since the system becomes equivalent to two serial capacitors. It also causes an electric field that opposes the polarization. Using a high permittivity material such as HfO2 reduces the voltage drop and the effect of depolarization.
To date, the majority of the work involving FeFETs has been based on conventional ferroelectric materials such as Lead Zirconate Titanate (PZT) and Strontium Bismuth Tantalate (SBT). These materials are not compatible with standard IC processing and furthermore scaling thicknesses in PZT and SBT result in loss of polarization characteristics. Recently, ferroelectricity has been reported in doped hafnium oxide thin films with dopants such as Si, Al, and Gd. Particularly, silicon doped hafnium oxide (Si:HfO2) has shown promise. In this material, the remnant polarization considerably increases by decreasing the layer thickness. The lower permittivity of Si:HfO2 compared to that of PZT and SBT, allows to employ thinner films that reduce fringing effects.
This study focuses on employing Si:HfO2 in short channel FeFETs. The study has two major objectives. First, to show that short channel FeFETs can be accomplished with large memory window. Second, to demonstrate the role of bulk layer thickness and permittivity on FeFET performance.
N-channel metal oxide semiconductor FET (N-MOSFET) with printed channel length of 26 nm has been designed with Si:HfO2 as the ferroelectric layer, and TiN as the gate electrode. The effects of buffer layer thickness and permittivity and ferroelectric layer thickness on the memory window have been explored using Silvaco Atlas software that employs ferroelectric FET device physics developed by Miller et al. Polarization characteristics reported for Si:HfO2 have been incorporated in this model. The simulations performed in this study have shown that using Si:HfO2 as a ferroelectric material makes it possible to accomplish short channel FeFETs with good performance even without using buffer layers. This means it is possible to minimize depolarization effects. Using Si:HfO2 as a ferroelectric layer makes it possible to accomplish highly scaled and ultra-low-power FeFETs
Glutamate induces autophagy via the two-pore channels in neural cells
NAADP (nicotinic acid adenine dinucleotide phosphate) has been proposed as a second messenger for glutamate in neuronal and glial cells via the activation of the lysosomal Ca2+ channels TPC1 and TPC2. However, the activities of glutamate that are mediated by NAADP remain unclear. In this study, we evaluated the effect of glutamate on autophagy in astrocytes at physiological, non-toxic concentration. We found that glutamate induces autophagy at similar extent as NAADP. By contrast, the NAADP antagonist NED-19 or SiRNA-mediated inhibition of TPC1/2 decreases autophagy induced by glutamate, confirming a role for NAADP in this pathway. The involvement of TPC1/2 in glutamate-induced autophagy was also confirmed in SHSY5Y neuroblastoma cells. Finally, we show that glutamate leads to a NAADP-dependent activation of AMPK, which is required for autophagy induction, while mTOR activity is not affected by this treatment. Taken together, our results indicate that glutamate stimulates autophagy via NAADP/TPC/AMPK axis, providing new insights of how Ca2+ signalling glutamate-mediated can control the cell metabolism in the central nervous system
Janus Monolayers of Magnetic Transition Metal Dichalcogenides as an All-in-One Platform for Spin-Orbit Torque
We theoretically predict that vanadium-based Janus dichalcogenide monolayers
constitute an ideal platform for spin-orbit-torque memories. Using first
principles calculations, we demonstrate that magnetic exchange and magnetic
anisotropy energies are higher for heavier chalcogen atoms, while the broken
inversion symmetry in the Janus form leads to the emergence of Rashba-like
spin-orbit coupling. The spin-orbit torque efficiency is evaluated using
optimized quantum transport methodology and found to be comparable to heavy
nonmagnetic metals. The coexistence of magnetism and spin-orbit coupling in
such materials with tunable Fermi-level opens new possibilities for monitoring
magnetization dynamics in the perspective of non-volatile magnetic random
access memories.Comment: 5 pages, 4 figure
An Engineering Approach to Improve Performance Predictions for Wind Turbine Applications: Comparison with Full Navier-Stokes Model and Experimental Measurements
Accurate predictions of aerodynamic performance and near wake expansion around Horizontal Axis Wind Turbine (HAWT) rotors is pivotal for studying wind turbine wake interactions and optimizing wind farm layouts. This study introduces a novel engineering model centered on stall delay correction to enhance the precision of the Actuator Disk Method (ADM) predictions in both aerodynamic performance and near wake expansion around HAWT rotors. The model is developed based on a comprehensive study of the 3D lift coefficient evolution over the rotor blade, incorporating a shift parameter that considers both stall angle detection and radial decrement. The proposed approach demonstrates remarkable agreements, showcasing discrepancies as low as 7% for both loads and axial wake predictions. These quantifiable results underscore the effectiveness of the model in capturing intricate aerodynamic phenomena. Looking forward, the success of this approach opens avenues for broader applications, guiding future research in wind energy towards improved simulation accuracy and optimized wind farm designs. 
A Hybrid Sensor Based Backstepping Control Approach with its application to Fault-Tolerant Flight Control
Recently, an incremental type sensor based backstepping (SBB) control approach, based on singular perturbation theory and Tikhonov’s theorem, has been proposed. This Lyapunov function based method uses measurements of control variables and less model knowledge, and it is not susceptible to the model uncertainty caused by fault scenarios. In this paper, the SBB method has been implemented on a fixed wing aircraft with its focus on handling structural changes caused by damages. A new hybrid autopilot flight controller has been developed for a Boeing 747-200 aircraft after combining nonlinear dynamic inversion (NDI) with SBB control approach. Two benchmarks for fault tolerant flight control (FTFC), named rudder runaway and engine separation, are employed to evaluate the proposed method. The simulation results show that the proposed control approach leads to a zero tracking-error performance in nominal condition and guarantees the stability of the closed-loop system under failures as long as the reference commands are located in the safe flight envelope
Preliminary petrological inferences on the high-grade metamorphic rocks exhumed by the South Rif Thrust, Prerif, Northern Morocco
The exhumation of deep crustal rocks along major shear zones is common, yet a highly debated subject, particularly when occurring during recent tectonic events. This is the case of the South Rif Thrust (SRT), a significant shear zone analogous to those described at the Betic Cordillera in Spain.
The SRT separates two major geodynamic domains in Northern Morocco: a) the Prerif, to the North, mostly composed of Miocenic sedimentary units on top of a stratigraphic sequence continuously deposited since the Triassic; and b) the Western Meseta, to the South, mostly composed of Paleozoic metasedimentary units, correlated with the Iberian Variscan Belt [1]. Associated to the SRT, and exhumed by its activity, there is a dismembered and exotic high-grade metamorphic belt representative of the middle and lower crust. Also in this region, several thermo-mineral waters occur, whose deep circulation can be traced back to the SRT [2].
Detailed geological mapping, structural, stratigraphic and petrographic analyses on this dismembered and highly deformed exotic sequence reveal the presence of low- to high-grade metasediments (including migmatites and felsic granulites), but mostly high-grade metabasic and basic rocks, including amphibolites, mafic granulites and gabbros. Preliminary geothermobarometry in the mafic granulites provides an important characterization of the infra-crustal conditions of the pre-Alpine geodynamics and of the activity and exhumation along the SRT since the Miocene: a) the mafic granulites endured M1 metamorphic peak conditions of T
= 1030 ºC at P = 8.5 kbar, which is consistent with typical conductive continental crust geothermal gradients (~30 ºC.km-1); b) M2 retrogression occurred by near isothermal decompression at T = 820 ºC and P = 3.5 kbar, implying an initial vertical uplift of >18 km of the granulite-facies rocks to very shallow levels; c) during this period, the geothermal gradient in the region surpassed 60 ºC.km-1; d) exhumation and retrogression continued by almost isobaric cooling at T < 750 ºC and P = 1.7 – 3.0 kbar with an M3 amphibolitization of the granulites after late water inflow.
The overall metamorphic evolution of these deep crustal rocks is compatible with a clockwise P-T path, involving initial fast tectonic exhumation, followed by thermal readjustment to shallower levels. This is consistent with the currently observed geothermal gradients in the area (≤ 42 ºC.km-1) [2] which may still be a reflection of the events during the Miocene. These petrological constrains on the tectonic processes associated with the exhumation of this lower crust segment and the activity of the SRT during the closure of the Alboran Basin are key to understanding the circulation of deep hot waters, which are an important part of the economy of this region in Northern Morocco.publishe
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
The Impact of Parkinson’s Disease on Postural Control in Older People and How Sex can Mediate These Results: A Systematic Review
Introduction: Parkinson’s disease is most prevalent among elderly people, 65 years and over, and leads to an alteration in motor control associated with postural instability. Current evidence shows that postural control decreases with the aging process. In addition, postural control is more altered in healthy aged men than in women. Until today, few studies have evaluated the combined impact of Parkinson’s disease and sex on postural control. This review has allowed to evaluate the impact of Parkinson’s disease and sex on postural control measurements in elderly people.
Methodology: Studies have been selected from two main databases: PubMed and EBSCO using the keywords “Parkinson”, “postural control OR balance” and “sex”. Articles related to the evaluation of postural control, including men and women with Parkinson’s aged over 65 years old, regardless of stage, were included (n = 179). Articles were excluded if not written in French or English or not presenting original content.
Results: Ten (10) studies out of 179 that fulfilled inclusion and exclusion criteria were reported in the final analysis, which cumulates a total of 944 individuals with Parkinson’s (410 women). In general, results show greater postural instability among people with Parkinson’s compared to healthy subjects, and this according to different objective measurements using stabilographic parameters from force platforms. Only two studies out of ten evaluated postural control while briefly considering distinctions between sex, but without showing a significant difference between men and women with Parkinson’s. Parkinson’s severity, length of time of Parkinson’s disease and cognitive state of the person are the three variables with a negative impact on postural control.
Conclusion: Older people with Parkinson’s disease have greater postural instability. Sex does not seem to influence the postural control of elderly people with Parkinson’s, although more studies are necessary
Anaplasma phagocytophilum Ats-1 Is Imported into Host Cell Mitochondria and Interferes with Apoptosis Induction
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, infects human neutrophils and inhibits mitochondria-mediated apoptosis. Bacterial factors involved in this process are unknown. In the present study, we screened a genomic DNA library of A. phagocytophilum for effectors of the type IV secretion system by a bacterial two-hybrid system, using A. phagocytophilum VirD4 as bait. A hypothetical protein was identified as a putative effector, hereby named Anaplasma translocated substrate 1 (Ats-1). Using triple immunofluorescence labeling and Western blot analysis of infected cells, including human neutrophils, we determined that Ats-1 is abundantly expressed by A. phagocytophilum, translocated across the inclusion membrane, localized in the host cell mitochondria, and cleaved. Ectopically expressed Ats-1 targeted mitochondria in an N-terminal 17 residue-dependent manner, localized in matrix or at the inner membrane, and was cleaved as native protein, which required residues 55–57. In vitro-translated Ats-1 was imported in a receptor-dependent manner into isolated mitochondria. Ats-1 inhibited etoposide-induced cytochrome c release from mitochondria, PARP cleavage, and apoptosis in mammalian cells, as well as Bax-induced yeast apoptosis. Ats-1(55–57) had significantly reduced anti-apoptotic activity. Bax redistribution was inhibited in both etoposide-induced and Bax-induced apoptosis by Ats-1. Taken together, Ats-1 is the first example of a bacterial protein that traverses five membranes and prevents apoptosis at the mitochondria
- …