34 research outputs found

    Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 346 (2007): 76-86, doi:10.1016/j.jembe.2007.03.007.Experiments were carried out to investigate the effects of nutrients, salinity, pH and light:dark cycle on growth rate and production of reactive oxygen species (ROS) by Chattonella marina, a harmful algal bloom (HAB) species that often causes fish kills. Different nitrogen forms (organic-N and inorganic-N), N:P ratios, light:dark cycles and salinity significantly influenced algal growth, but not ROS production. However, iron concentration and pH significantly affected both growth and ROS production in C. marina. KCN (an inhibitor of mitochondrial respiration) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (an inhibitor of photosynthesis) had no significant effects on ROS production. Vitamin K3 (a plasma membrane electron shuttle) enhanced ROS production while its antagonist, dicumarol, decreased ROS production. Taken together, our results suggest that ROS production by C. marina is related to a plasma membrane enzyme system regulated by iron availability but is independent of growth, photosynthesis, availability of macronutrients, salinity and irradiance.The work described in this paper was supported by a CERG grant from the University Grants Committee of the Hong Kong Special Administrative Region, China to RSSW (Project No. 9040864). Support for DMA is provided by U.S. National Science Foundation grant # OCE-0136861

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk

    A settlement inhibition assay with cyprid larvae of the barnacle Balanus amphitrite

    No full text
    A settlement inhibition assay using barnacle cyprid larvae, Balanus amphitrite, was developed with Cd2+ and phenol as standard reference toxicants. Mean percentage settlement of cyprid larvae showed a progressive reduction with increasing concentrations of Cd2+ and phenol. A significant reduction in settlement was found when cyprids were exposed to 0.1 mgL(-1) Cd2+ or 10 mgL(-1) phenol. The assay was used to assess the sublethal toxicity of three oil dispersants (Vecom B-1425 GL, Norchem OSD-570 and Corexit 9905) commonly used in Hong Kong waters. Results of this investigation show that the barnacle settlement inhibition assay can be incorporated into the battery of tests currently available for ecotoxicological assessment of marine contaminants. (C) 1997 Elsevier Science Ltd
    corecore