758 research outputs found

    Serpula vermicularis reefs on very sheltered circalittoral muddy sand

    Get PDF
    Non

    Effect of tensor couplings in a relativistic Hartree approach for finite nuclei

    Get PDF
    The relativistic Hartree approach describing the bound states of both nucleons and anti-nucleons in finite nuclei has been extended to include tensor couplings for the ω\omega- and ρ\rho-meson. After readjusting the parameters of the model to the properties of spherical nuclei, the effect of tensor-coupling terms rises the spin-orbit force by a factor of 2, while a large effective nucleon mass m/MN0.8m^{*}/M_{N} \approx 0.8 sustains. The overall nucleon spectra of shell-model states are improved evidently. The predicted anti-nucleon spectra in the vacuum are deepened about 20 -- 30 MeV.Comment: 31 pages, 4 postscript figures include

    Disease-specific, neurosphere-derived cells as models for brain disorders

    Get PDF
    There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson's disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson's disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery

    Boson Expansion Methods in (1+1)-dimensional Light-Front QCD

    Full text link
    We derive a bosonic Hamiltonian from two dimensional QCD on the light-front. To obtain the bosonic theory we find that it is useful to apply the boson expansion method which is the standard technique in quantum many-body physics. We introduce bilocal boson operators to represent the gauge-invariant quark bilinears and then local boson operators as the collective states of the bilocal bosons. If we adopt the Holstein-Primakoff type among various representations, we obtain a theory of infinitely many interacting bosons, whose masses are the eigenvalues of the 't Hooft equation. In the large NN limit, since the interaction disappears and the bosons are identified with mesons, we obtain a free Hamiltonian with infinite kinds of mesons.Comment: 20 pages, latex, no figures, journal version (no significant changes), to appear in Phys. Rev.

    Towards Solving QCD - The Transverse Zero Modes in Light-Cone Quantization

    Get PDF
    We formulate QCD in (d+1) dimensions using Dirac's front form with periodic boundary conditions, that is, within Discretized Light-Cone Quantization. The formalism is worked out in detail for SU(2) pure glue theory in (2+1) dimensions which is approximated by restriction to the lowest {\it transverse} momentum gluons. The dimensionally-reduced theory turns out to be SU(2) gauge theory coupled to adjoint scalar matter in (1+1) dimensions. The scalar field is the remnant of the transverse gluon. This field has modes of both non-zero and zero {\it longitudinal} momentum. We categorize the types of zero modes that occur into three classes, dynamical, topological, and constrained, each well known in separate contexts. The equation for the constrained mode is explicitly worked out. The Gauss law is rather simply resolved to extract physical, namely color singlet states. The topological gauge mode is treated according to two alternative scenarios related to the In the one, a spectrum is found consistent with pure SU(2) gluons in (1+1) dimensions. In the other, the gauge mode excitations are estimated and their role in the spectrum with genuine Fock excitations is explored. A color singlet state is given which satisfies Gauss' law. Its invariant mass is estimated and discussed in the physical limit.Comment: LaTex document, 26 pages, one figure (obtainable by contacting authors). To appear in Physical. Review

    Measurement of E2 transition strengths in Mg32,34

    Get PDF
    The degree of collectivity in the neutron-rich nuclei Mg32 and Mg34 has been determined via intermediate-energy Coulomb excitation in inverse kinematics. Measured energies of the first excited 2+ states and reduced electric quadrupole transition probabilities B(E2;0g.s.+→21+) are presented for Mg32 and Mg34. The results agree with previous measurements and confirm the placement of both nuclei within the "island of inversion.

    Effective risk relievers for dimensional perceived risks on mail-order purchase: a case study on speciality foods in the UK

    Get PDF
    This article examines the effective risk relievers for different dimensions of perceived risk on mail-order purchase of food products. The sample comprised 1,600 active and inactive mail-order specialty food shoppers in the UK. The analysis focused on the correlation coefficients between consumers' levels of perceived risk and their weight on the importance of the risk relievers. Amongst 15 risk relievers, the results implied that there are certain risk relievers attached to higher levels of importance by consumers, who perceive higher levels of risks in certain aspects of mail-order purchase. Therefore, mail-order companies should promote the effective risk relievers to reduce specific dimensions of perceived risks

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Genomic basis for RNA alterations in cancer

    Get PDF
    Transcript alterations often result from somatic changes in cancer genomes. Various forms of RNA alterations have been described in cancer, including overexpression, altered splicing and gene fusions; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer

    Dynamic testing and transfer: An examination of children's problem-solving strategies

    Get PDF
    This study examined the problem-solving behaviour of 104 children (aged 7–8 years) when tackling construction-analogy tasks. Children were allocated to one of two conditions: either a form of unguided practice alone or this in combination with training based on graduated prompt techniques. Children's ability to solve figural open-ended analogy-problems was investigated as well as their ability to construct new analogy problems themselves. We examined children's progression in solving analogy problems and the variability in their strategy-use. Results showed that the group that received training made greater progress in solving analogy problems than children who only received unguided practice opportunities. However, the training appeared to give no additional improvement in performance on the transfer task over that of repeated unguided practice alone. Findings from this study demonstrate that an open construction task can provide additional information about children's cognitive learning potential
    corecore