956 research outputs found

    Context and the development of metaphor comprehension

    Get PDF
    Running title: Metaphoric understandingIncludes bibliographical references (leaves 9-10)Supported in part by the Office of Educational Research and Improvement under cooperative agreement no. OEG 0087-C100

    Knowledge acquisition in observational astronomy

    Get PDF
    Includes bibliographic references (p. 7

    The development of metaphorical language comprehension in typical development and in Williams syndrome

    Get PDF
    The domain of figurative language comprehension was used to probe the developmental relation between language and cognition in typically developing individuals and individuals with Williams syndrome. Extending the work of Vosniadou and Ortony, the emergence of nonliteral similarity and category knowledge was investigated in 117 typically developing children between 4 and 12 years of age, 19 typically developing adults, 15 children with Williams syndrome between 5 and 12 years of age, and 8 adults with Williams syndrome. Participants were required to complete similarity and categorization statements by selecting one of two words (e.g., either “The sun is like ___” or “The sun is the same kind of thing as ___”) with word pairs formed from items that were literally, perceptually, or functionally similar to the target word or else anomalous (e.g., moon, orange, oven, or chair, respectively). Results indicated that individuals with Williams syndrome may access different, less abstract knowledge in figurative language comparisons despite the relatively strong verbal abilities found in this disorder

    New Learning in Science and Technology.

    Get PDF

    Visual and Analytic Strategies in Geometry

    Get PDF
    We argue that there is an increasing reliance on analytic strategies compared to visuo-spatial strategies, which is related to geometry expertise and not on individual differences in cognitive style. A Visual/Analytic Strategy Test (VAST) was developed to investigate the use of visuo-spatial and analytic strategies in geometry in 30 mathematics teachers and 134 11th grade students. Students’ performance in the VAST was also compared to performance in tests of visuo-spatial abilities, of abstract reasoning, and of geometrical knowledge. The results showed high performance of all the participants in the VAST items that could be solved by relying on visuo-spatial strategies. However, only the math teachers showed high performance in the VAST items that required the application of analytic geometrical strategies. There were high correlations between the students’ performance in the tests of visuo-spatial and abstract reasoning abilities and the VAST Analytic Strategies scale, but the contribution of these tests to the VAST analytic performance became statistically insignificant when geometrical knowledge was used as a mediating factor. The implications of this work for the learning and assessment of geometrical knowledge are discussed.

    Teachers' attitudes to and beliefs about web-based Collaborative Learning Environments in the context of an international implementation

    Get PDF
    "Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical activity theory [Engestrom, Y. (1987). Learning by expanding.- An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit; Engestrom, Y., Engestrom, R., & Suntio, A. (2002). Can a school community learn to master its own future? An activity-theoretical study of expansive learning among middle school teachers. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Oxford: Blackwell Publishers]. The teachers were positive about CLEs and their possible role in initiating pedagogical innovation and enhancing personal professional development. This positive perception held across cultures and national boundaries. Teachers were aware of the fact that demanding planning was needed for successful implementations of CLEs. However, the specific strategies through which the teachers can guide students' inquiries in CLEs and the assessment of new competencies that may characterize student performance in the CLEs were poorly represented in the teachers' reflections on CLEs. The attitudes and beliefs of the teachers from separate countries had many similarities, but there were also some clear differences, which are discussed in the article. (c) 2005 Elsevier Ltd. All rights reserved.""Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical activity theory [Engestrom, Y. (1987). Learning by expanding.- An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit; Engestrom, Y., Engestrom, R., & Suntio, A. (2002). Can a school community learn to master its own future? An activity-theoretical study of expansive learning among middle school teachers. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Oxford: Blackwell Publishers]. The teachers were positive about CLEs and their possible role in initiating pedagogical innovation and enhancing personal professional development. This positive perception held across cultures and national boundaries. Teachers were aware of the fact that demanding planning was needed for successful implementations of CLEs. However, the specific strategies through which the teachers can guide students' inquiries in CLEs and the assessment of new competencies that may characterize student performance in the CLEs were poorly represented in the teachers' reflections on CLEs. The attitudes and beliefs of the teachers from separate countries had many similarities, but there were also some clear differences, which are discussed in the article. (c) 2005 Elsevier Ltd. All rights reserved.""Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical activity theory [Engestrom, Y. (1987). Learning by expanding.- An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit; Engestrom, Y., Engestrom, R., & Suntio, A. (2002). Can a school community learn to master its own future? An activity-theoretical study of expansive learning among middle school teachers. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Oxford: Blackwell Publishers]. The teachers were positive about CLEs and their possible role in initiating pedagogical innovation and enhancing personal professional development. This positive perception held across cultures and national boundaries. Teachers were aware of the fact that demanding planning was needed for successful implementations of CLEs. However, the specific strategies through which the teachers can guide students' inquiries in CLEs and the assessment of new competencies that may characterize student performance in the CLEs were poorly represented in the teachers' reflections on CLEs. The attitudes and beliefs of the teachers from separate countries had many similarities, but there were also some clear differences, which are discussed in the article. (c) 2005 Elsevier Ltd. All rights reserved."Peer reviewe

    Some Assembly Required: How Scientific Explanations are Constructed During Clinical Interviews

    Get PDF
    This article is concerned with commonsense science knowledge, the informally-gained knowledge of the natural world that students possess prior to formal instruction in a scientific discipline. Although commonsense science has been the focus of substantial study for more than two decades, there are still profound disagreements about its nature and origin, and its role in science learning. What is the reason that it has been so difficult to reach consensus? We believe that the problems run deep; there are difficulties both with how the field has framed questions and the way that it has gone about seeking answers. In order to make progress, we believe it will be helpful to focus on one type of research instrument – the clinical interview – that is employed in the study of commonsense science. More specifically, we argue that we should seek to understand and model, on a moment-by-moment basis, student reasoning as it occurs in the interviews employed to study commonsense science. To illustrate and support this claim, we draw on a corpus of interviews with middle school students in which the students were asked questions pertaining to the seasons and climate phenomena. Our analysis of this corpus is based on what we call the mode-node framework. In this framework, student reasoning is seen as drawing on a set of knowledge elements we call nodes, and this set produces temporary explanatory structures we call dynamic mental constructs. Furthermore, the analysis of our corpus seeks to highlight certain patterns of student reasoning that occur during interviews, patterns in what we call conceptual dynamics. These include patterns in which students can be seen to search through available knowledge (nodes), in which they assemble nodes into an explanation, and in which they converge on and shift among alternative explanations

    The neuroscience of conceptual learning in science and mathematics

    Get PDF
    Learning new concepts in mathematics and science often involves inhibiting prior beliefs or direct perceptual information. Recent neuroimaging work suggests that experts simply get better at inhibiting these pre-potent responses rather than replacing prior concepts with the newer concepts. A review of both behavioral and neuroimaging evidence with children suggests that improving inhibitory control is a key factor in learning new scientific and mathematical facts. This finding has implications for how these subjects are taught in the classroom and provides corroborating evidence for practices already in place
    corecore