377 research outputs found

    A generalization of the Entropy Power Inequality to Bosonic Quantum Systems

    Full text link
    In most communication schemes information is transmitted via travelling modes of electromagnetic radiation. These modes are unavoidably subject to environmental noise along any physical transmission medium and the quality of the communication channel strongly depends on the minimum noise achievable at the output. For classical signals such noise can be rigorously quantified in terms of the associated Shannon entropy and it is subject to a fundamental lower bound called entropy power inequality. Electromagnetic fields are however quantum mechanical systems and then, especially in low intensity signals, the quantum nature of the information carrier cannot be neglected and many important results derived within classical information theory require non-trivial extensions to the quantum regime. Here we prove one possible generalization of the Entropy Power Inequality to quantum bosonic systems. The impact of this inequality in quantum information theory is potentially large and some relevant implications are considered in this work

    From the Bloch sphere to phase space representations with the Gottesman-Kitaev-Preskill encoding

    Full text link
    In this work, we study the Wigner phase-space representation of qubit states encoded in continuous variables (CV) by using the Gottesman-Kitaev-Preskill (GKP) mapping. We explore a possible connection between resources for universal quantum computation in discrete-variable (DV) systems, i.e. non-stabilizer states, and negativity of the Wigner function in CV architectures, which is a necessary requirement for quantum advantage. In particular, we show that the lowest Wigner logarithmic negativity of qubit states encoded in CV with the GKP mapping corresponds to encoded stabilizer states, while the maximum negativity is associated with the most non-stabilizer states, H-type and T-type quantum states.Comment: (v1) Accepted for publication in the Springer's "Mathematics for Industry" series. (v2) Typo in the abstract fixed; URL of the conference where the paper has been presented added: International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), held in September 2019 in Fukuoka, Japan (https://www.mqc2019.org/mqc2019/program

    Statistical modeling of ground motion relations for seismic hazard analysis

    Full text link
    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions. etc

    Flavodiiron Proteins in Oxygenic Photosynthetic Organisms: Photoprotection of Photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803

    Get PDF
    BACKGROUND: Flavodiiron proteins (FDPs) comprise a group of modular enzymes that function in oxygen and nitric oxide detoxification in Bacteria and Archaea. The FDPs in cyanobacteria have an extra domain as compared to major prokaryotic enzymes. The physiological role of cyanobacteria FDPs is mostly unknown. Of the four putative flavodiiron proteins (Flv1-4) in the cyanobacterium Synechocystis sp. PCC 6803, a physiological function in Mehler reaction has been suggested for Flv1 and Flv3. PRINCIPAL FINDINGS: We demonstrate a novel and crucial function for Flv2 and Flv4 in photoprotection of photosystem II (PSII) in Synechocystis. It is shown that the expression of Flv2 and Flv4 is high under air level of CO(2) and negligible at elevated CO(2). Moreover, the rate of accumulation of flv2 and flv4 transcripts upon shift of cells from high to low CO(2) is strongly dependent on light intensity. Characterization of FDP inactivation mutants of Synechocystis revealed a specific decline in PSII centers and impaired translation of the D1 protein in Delta flv2 and Delta flv4 when grown at air level CO(2) whereas at high CO(2) the Flvs were dispensable. Delta flv2 and Delta flv4 were also more susceptible to high light induced inhibition of PSII than WT or Delta flv1 and Delta flv3. SIGNIFICANCE: Analysis of published sequences revealed the presence of cyanobacteria-like FDPs also in some oxygenic photosynthetic eukaryotes like green algae, mosses and lycophytes. Our data provide evidence that Flv2 and Flv4 have an important role in photoprotection of water-splitting PSII against oxidative stress when the cells are acclimated to air level CO(2). It is conceivable that the function of FDPs has changed during evolution from protection against oxygen in anaerobic microbes to protection against reactive oxygen species thus making the sustainable function of oxygen evolving PSII possible. Higher plants lack FDPs and distinctly different mechanisms have evolved for photoprotection of PSII

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Use of humanised rat basophilic leukaemia cell line RS-ATL8 for the assessment of allergenicity of Schistosoma mansoni proteins.

    Get PDF
    BACKGROUND Parasite-specific IgE is thought to correlate with protection against Schistosoma mansoni infection or re-infection. Only a few molecular targets of the IgE response in S. mansoni infection have been characterised. A better insight into the basic mechanisms of anti-parasite immunity could be gained from a genome-wide characterisation of such S. mansoni allergens. This would have repercussions on our understanding of allergy and the development of safe and efficacious vaccinations against helminthic parasites. METHODOLOGY/PRINCIPAL FINDINGS A complete medium- to high-throughput amenable workflow, including important quality controls, is described, which enables the rapid translation of S. mansoni proteins using wheat germ lysate and subsequent assessment of potential allergenicity with a humanised Rat Basophilic Leukemia (RBL) reporter cell line. Cell-free translation is completed within 90 minutes, generating sufficient amounts of parasitic protein for rapid screening of allergenicity without any need for purification. Antigenic integrity is demonstrated using Western Blotting. After overnight incubation with infected individuals' serum, the RS-ATL8 reporter cell line is challenged with the complete wheat germ translation mixture and Luciferase activity measured, reporting cellular activation by the suspected allergen. The suitability of this system for characterization of novel S. mansoni allergens is demonstrated using well characterised plant and parasitic allergens such as Par j 2, SmTAL-1 and the IgE binding factor IPSE/alpha-1, expressed in wheat germ lysates and/or E. coli. SmTAL-1, but not SmTAL2 (used as a negative control), was able to activate the basophil reporter cell line. CONCLUSION/SIGNIFICANCE This method offers an accessible way for assessment of potential allergenicity of anti-helminthic vaccine candidates and is suitable for medium- to high-throughput studies using infected individual sera. It is also suitable for the study of the basis of allergenicity of helminthic proteins

    Activated Microglia Inhibit Axonal Growth through RGMa

    Get PDF
    By causing damage to neural networks, spinal cord injuries (SCI) often result in severe motor and sensory dysfunction. Functional recovery requires axonal regrowth and regeneration of neural network, processes that are quite limited in the adult central nervous system (CNS). Previous work has shown that SCI lesions contain an accumulation of activated microglia, which can have multiple pathophysiological influences. Here, we show that activated microglia inhibit axonal growth via repulsive guidance molecule a (RGMa). We found that microglia activated by lipopolysaccharide (LPS) inhibited neurite outgrowth and induced growth cone collapse of cortical neurons in vitro—a pattern that was only observed when there was direct contact between microglia and neurons. After microglia were activated by LPS, they increased expression of RGMa; however, treatment with RGMa-neutralizing antibodies or transfection of RGMa siRNA attenuated the inhibitory effects of microglia on axonal outgrowth. Furthermore, minocycline, an inhibitor of microglial activation, attenuated the effects of microglia and RGMa expression. Finally, we examined whether these in vitro patterns could also be observed in vivo. Indeed, in a mouse SCI model, minocycline treatment reduced the accumulation of microglia and decreased RGMa expression after SCI, leading to reduced dieback in injured corticospinal tracts. These results suggest that activated microglia play a major role in inhibiting axon regeneration via RGMa in the injured CNS

    Resolving the Sources of Plasma Glucose Excursions following a Glucose Tolerance Test in the Rat with Deuterated Water and [U-13C]Glucose

    Get PDF
    Sources of plasma glucose excursions (PGE) following a glucose tolerance test enriched with [U-13C]glucose and deuterated water were directly resolved by 13C and 2H Nuclear Magnetic Resonance spectroscopy analysis of plasma glucose and water enrichments in rat. Plasma water 2H-enrichment attained isotopic steady-state within 2–4 minutes following the load. The fraction of PGE derived from endogenous sources was determined from the ratio of plasma glucose position 2 and plasma water 2H-enrichments. The fractional gluconeogenic contributions to PGE were obtained from plasma glucose positions 2 and 5 2H-positional enrichment ratios and load contributions were estimated from plasma [U-13C]glucose enrichments. At 15 minutes, the load contributed 26±5% of PGE while 14±2% originated from gluconeogenesis in healthy control rats. Between 15 and 120 minutes, the load contribution fell whereas the gluconeogenic contribution remained constant. High-fat fed animals had significant higher 120-minute blood glucose (173±6 mg/dL vs. 139±10 mg/dL, p<0.05) and gluconeogenic contributions to PGE (59±5 mg/dL vs. 38±3 mg/dL, p<0.01) relative to standard chow-fed controls. In summary, the endogenous and load components of PGE can be resolved during a glucose tolerance test and these measurements revealed that plasma glucose synthesis via gluconeogenesis remained active during the period immediately following a glucose load. In rats that were placed on high-fat diet, the development of glucose intolerance was associated with a significantly higher gluconeogenic contribution to plasma glucose levels after the load
    • …
    corecore