73 research outputs found

    Marine pelagic ecosystems: the West Antarctic Peninsula

    Get PDF
    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 28C increase in the annual mean temperature and a 68C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.68C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent AdeÂŽlie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along theWAPand the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response

    Ocean heat convergence and North Atlantic multidecadal heat content variability

    Get PDF
    We construct an upper ocean (0-1000m) North Atlantic heat budget (26°-67°N) for the period 1950-2020 using multiple observational datasets and an eddy-permitting global ocean model. On multidecadal timescales ocean heat transport convergence controls ocean heat content (OHC) tendency in most regions of the North Atlantic with little role for diffusive processes. In the subpolar North Atlantic (45°N-67°N) heat transport convergence is explained by geostrophic currents whereas ageostrophic currents make a significant contribution in the subtropics (26°N-45°N). The geostrophic contribution in all regions is dominated by anomalous advection across the time-mean temperature gradient although other processes make a significant contribution particularly in the subtropics. The timescale and spatial distribution of the anomalous geostrophic currents are consistent with a simple model of basin scale thermal Rossby waves propagating westwards/northwestwards in the subpolar gyre and multidecadal variations in regional OHC are explained by geostrophic currents periodically coming into alignment with the mean temperature gradient as the Rossby wave passes through. The global ocean model simulation shows that multidecadal variations in the Atlantic Meridional Overturning Circulation are synchronized with the ocean heat transport convergence consistent with modulation of the west-east pressure gradient by the propagating Rossby wave

    A carrying capacity framework for soil phosphorus and hydrological sensitivity from farm to catchment scales

    Get PDF
    Publication history: Accepted - 30 May 2019; Published online - 4 June 2019.Agricultural fieldswith above optimumsoil phosphorus (P) are considered to pose risks to water quality and especially when those areas are coincident with hydrologically sensitive areas (HSAs) that focus surface runoff pathways. This is a challenge tomanage in areas of agricultural intensity in surfacewater dominated catchments where water quality targets have to be met. In this study, a soil P survey of 13 sub-catchments and 7693 fields was undertaken in a 220 km2 catchment. HSAs were also determined as the top 25th percentile risk froma runoff routingmodel that used a LiDAR digital elevation model and soil hydraulic conductivity properties. Distributions of these spatial data were compared with river soluble reactive phosphorus (SRP) concentration measured fortnightly over one year. The results showed that 41% of fields exceeded the agronomic optimumfor soil P across the sub-catchments.When compared with the available water quality data, the results indicated that the high soil P carrying capacity area of the sub-catchmentswas 15%. Combining high soil P and HSA, the carrying capacity area of the sub-catchmentswas 1.5%. The opportunities to redistribute these riskswere analysed on fields with below optimum soil P and where HSA risk was also minimal. These ranged from 0.4% to 13.8% of sub-catchment areas and this limited potential, unlikely to fully reduce the P pressure to over-supplied fields, would need to be considered alongside addressing this over-supply and also with targeted HSA interception measures.This work was undertaken as a component of the “EU EAA Soil Sampling and Analysis Scheme”, funded by the Department of Agriculture, Environment and Rural Affairs (DAERA), Northern Ireland, under the European Union Exceptional Adjustment Aid Scheme.We thank catchment farmers for land access and participation. We acknowledge the contributions of AFBI scientific staffwhowere instrumental in the planning, acquisition and processing of data, Colleen Ward (AFBI Project Manager) and Peter Scott (DAERA lead). Finally we thank both anonymous reviewers for insightful comments and suggestions on the manuscript

    Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae)

    Get PDF
    This study was financially supported by the following institutions: the WWF-UK through R. Downie, the Japanese Mombukagakusho and the Japanese Society for the Promotion of Science, the Zone Atelier Antarctique et Subantarctique –LTER France of the CNRS.The Southern Ocean is currently experiencing major environmental changes, including in sea‐ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco‐indicators of environmental conditions in the Antarctic region. Here, based on 9 years of sea‐ice data, we found that the breeding success of AdĂ©lie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea‐ice cover (ca. 20%). We further examined the effects of sea‐ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea‐ice cover. The relationship between several dive parameters and sea‐ice cover in the foraging area appears to be quadratic. In years of low and high sea‐ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea‐ice cover. Our study therefore suggests that sea‐ice cover is likely to affect the reproductive performance of AdĂ©lie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea‐ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long‐term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations.PostprintPeer reviewe

    Aggressive dominance can decrease behavioral complexity on subordinates through synchronization of locomotor activities

    Get PDF
    Social environments are known to influence behavior. Moreover, within small social groups, dominant/subordinate relationships frequently emerge. Dominants can display aggressive behaviors towards subordinates and sustain priority access to resources. Herein, Japanese quail (Coturnix japonica) were used, given that they establish hierarchies through frequent aggressive interactions. We apply a combination of different mathematical tools to provide a precise quantification of the effect of social environments and the consequence of dominance at an individual level on the temporal dynamics of behavior. Main results show that subordinates performed locomotion dynamics with stronger long-range positive correlations in comparison to birds that receive few or no aggressions from conspecifics (more random dynamics). Dominant birds and their subordinates also showed a high level of synchronization in the locomotor pattern, likely emerging from the lack of environmental opportunities to engage in independent behavior. Findings suggest that dominance can potentially modulate behavioral dynamics through synchronization of locomotor activities.publishedVersionAlcala, Rocio. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales; Argentina.Caliva, Jorge MartĂ­n. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales; Argentina.Caliva, Jorge Martin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina.Flesia, Ana Georgina. Facultad de MatemĂĄtica, AstronomĂ­a, FĂ­sica y ComputaciĂłn; Argentina.Flesia, Ana Georgina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro de InvestigaciĂłn y Estudios de MatemĂĄtica; Argentina.Marin, RaĂșl Hector. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales; Argentina.Marin, RaĂșl Hector. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina.Kembro, Jackelyn Melissa. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    HARMONI at ELT: project status and instrument overview

    Get PDF

    The effect of acute hyperglycaemia on appetite and food intake in Type 1 diabetes mellitus

    No full text
    The definitive version is available at www.blackwell-synergy.comAimsTo determine the effects of acute hyperglycaemia on appetite and food intake in Type 1 diabetes mellitus.MethodsTwo separate studies, each involving eight adults with uncomplicated Type 1 diabetes, were performed: one in the fasted state (A) and the other after a nutrient preload (B). In both studies, perceptions of appetite (hunger and fullness) and food intake at a buffet meal were evaluated during euglycaemia (blood glucose, approximately 6 mmol/l) and hyperglycaemia (blood glucose, approximately 14 mmol/l). Both experiments were randomized and single-blind. In study A, appetite was assessed in the fasted state for 90 min before the buffet meal. In study B, a nutrient 'preload' of Ensure and milk containing 13C-octanoic acid was consumed 90 min before the meal. Gastric emptying of the preload was quantified with a radioisotopic breath test technique.ResultsThere was no significant difference in plasma insulin concentrations between euglycaemia and hyperglycaemia in either study. In study A, there were no differences in hunger, fullness or energy intake between the two treatment days. In study B, subjects were slightly less hungry between the preload and buffet meal during hyperglycaemia than euglycaemia (P = 0.04), and tended to have slower gastric emptying during hyperglycaemia (emptying coefficient, 3.89 +/- 0.16 vs. 3.57 +/- 0.21; P = 0.052), but there was no difference in food intake between hyperglycaemia and euglycaemia.ConclusionsAcute hyperglycaemia suppresses hunger after a nutrient preload, but not in the fasted state, in patients with uncomplicated Type 1 diabetes. This effect is small and not associated with changes in food intake.A. W. Russell, M. Horowitz, M. Ritz, C. MacIntosh, R. Fraser and I. M. Chapma
    • 

    corecore