1,928 research outputs found

    Poverty, Inequality and Growth in Zambia during the 1990s

    Get PDF
    Zambia, Poverty, Growth, Inequality, Economic reform

    New information from fish diets on the importance of glassy flying squid (Hyaloteuthis pelagica) (Teuthoidea: Ommastrephidae) in the epipelagic cephalopod community of the tropical Atlantic Ocean

    Get PDF
    Squids of the family Ommastrephidae are a vital part of marine food webs and support major fisheries around the world. They are widely distributed in the open ocean, where they are among the most abundant in number and biomass of nektonic epipelagic organisms. In turn, seven of the 11 genera of this family (Dosidicus, Illex, Martialia, Nototodarus, Ommastrephes, Sthenoteuthis, and Todarodes) are heavily preyed upon by top marine predators, i.e., birds, mammals, and fish, and currently support fisheries in both neritic and oceanic waters (Roper and Sweeney, 1984; Rodhouse, 1997). Their commercial importance has made the large ommastrephids the target of many scientific investigations and their biology is consequently reasonably well-known (Nigmatullin et al., 2001; Zuyev et al., 2002; Bower and Ichii, 2005). In contrast, much less information is available on the biology and ecological role of the smaller, unexploited species of ommastrephids (e.g., Eucleoteuthis, Hyaloteuthis, Ornithoteuthis, and Todaropsis)

    Seabirds as indicators of marine resources:black-browed albatrosses feeding on ommastrephid squids in Kerguelen waters

    Get PDF
    The species, distributions and abundances of squids in the Southern Ocean are difficult to assess by conventional oceanographic means. The study of the food and feeding ecology of squid-eating predators such as procellariiform seabirds appears to be a supplemental way to collect useful information on cephalopod biology. Regurgitations were collected from 52 chicks of the black-browed albatross Diomedea melanophrys at Kerguelen Island in February 1994. Cephalopod remains were removed and identified by means of beaks, gladius and mantle. Squid beaks of the family Ommastrephidae amounted to 55 % (n = 348) of the accumulated squid beaks. They were also those most often regurgitated in association with partially digested crowns and mantles (90 % of the squid fresh remains, n = 28). Two species of ommastrephids equally dominated the squid diet, Martialia hyadesi (only found once in Kerguelen waters) and a Todarodes species, probably T. angolensis, previously unknown in the area. The concomitant satellite tracking of 16 adult birds over a total of 35 foraging trips identified their main feeding areas as the inner shelf break to the NE and over a bank to the SE of Kerguelen Island. Taken together, albatross dietary and foraging data indicate that juveniles of M. hyadesi and Todarodes sp, concentrate over the upper shelf slope to the east of Kerguelen Island, some of them occurring in the top 5 m of the water column where they are caught by the albatrosses

    Campus & alumni news

    Full text link
    Boston University Medicine was published by the Boston University Medical Campus, and presented stories on events and topics of interest to members of the BU Medical Campus community. It followed the discontinued publication Centerscope as Boston University Medicine from 1991-2005, then continued as Campus & Alumni News from 2006-2013 before returning to the title Boston University Medicine from 2014-present

    Seasonal importance of oceanic myctophids in king penguin diet at Crozet Islands

    Get PDF

    Analysis of stable isotope ratios in blood of tracked wandering albatrosses fails to distinguish a δ13C gradient within their winter foraging areas in the southwest Atlantic Ocean

    Get PDF
    Rationale The main limitation of isotopic tracking for inferring distribution is the lack of detailed reference maps of the isotopic landscape (i.e. isoscapes) in the marine environment. Here, we attempt to map the marine δ13C isoscape for the southwestern sector of the Atlantic Ocean, and assess any temporal variation using the wandering albatross as a model species. Methods Tracking data and blood and diet samples were collected monthly from wandering albatrosses rearing chicks at Bird Island, South Georgia, during the austral winter between May and October 2009. The δ13C and δ15N values were measured by mass spectrometry in plasma and blood cells, and related to highly accurate data on individual movements and feeding activity obtained using three types of device: GPS, activity (immersion) loggers and stomach temperature probes. Results The tracked birds foraged in waters to the north or northwest of South Georgia, including the Patagonian shelf-break, as far as 2000 km from the colony. The foraging region encompassed the two main fronts in the Southern Ocean (Polar and Subantarctic fronts). The δ13C values varied by only 2.1 ‰ in plasma and 2.5 ‰ in blood cells, and no relationships were found between the δ13C values in plasma and the mean latitude or longitude of landings or feeding events of each individual. Conclusions The failure to distinguish a major biogeographic gradient in δ13C values suggest that these values in the south Atlantic Ocean are fairly homogeneous. There was no substantial variation among months in either the δ13C or the δ15N values of plasma or blood cells of tracked birds. As birds did not show a significant change in diet composition or foraging areas during the study period, these results provide no evidence for major temporal variation in stable isotope ratios in consumer tissues, or in the regional marine isoscape in the austral winter of 2009

    Amino acid δ13C and δ15N from sclerotized beaks: a new tool to investigate the foraging ecology of cephalopods, including giant and colossal squids

    Get PDF
    International audienceCombining the use of predators as biological samplers together with measurements of the stable isotopic ratios (d13CBulk and d15NBulk) of their sclerotized beaks help investigate foraging ecology of poorly known oceanic cephalopods. However, high chitin content (an amino-sugar macromolecule) lowers beak d15NBulk values, thus precluding direct isotopic comparison with other tissues and organisms. To overcome the chitin effect, compound-specific isotopic analysis of amino acids (CSIA-AA) was performed on squid beaks. The method was applied on beaks and muscle, and the resulting d13CAA and d15NAA values compared between tissues. The usefulness of CSIA was tested by defining the habitat and trophic position (TPCSIA) of squids using their d13CAA and d15NAA values. Beak d13CAA values were reliably measured on 12 AA that included 5 essential and 7 non-essential AA, and d15NAA values were quantified on at least 7 AA that included 2 source and 4 trophic AA. Importantly, d13CAA and d15NAA varied little between muscle and lower and upper beaks, and TPCSIA estimates were identical regardless of the tissue considered. Tissue d13CAA values of both essential and non-essential AA reflected the latitudinal baseline d13C gradient that occurs in the Southern Indian Ocean, while beak d15NAA from source and trophic AA allowed the disentangling of the baseline effect from the trophic effect, and thus better calculations of squid TP estimates than from d15NBulk values. Beak d13CAA and d15NAA defined isotopic niches of colossal and giant squids, the 2 largest living invertebrates. In subantarctic waters, they segregate by having species-specific foraging habitats (using d13CGly or d15NPhe) and TPCSIA (using d15NGlx and d15NPhe). TPCSIA is higher in colossal (4.7) than giant (4.3) squids, and both values compare well with those of myctophid-eaters, suggesting very large squids prey primarily upon small zoo planktivorous fishes. As expected, CSIA-AA overcomes the chitin effect on beaks and it is a powerful tool to investigate trophic interactions of cephalopods. The method has a great potential with arthropods, because chitin is a main component of their exoskeleton but the deleterious effect of chitin is overlooked in isotopic studies focusing on crustaceans and insects
    corecore