471 research outputs found

    Using timing of ice retreat to predict timing of fall freeze-up in the Arctic

    Get PDF
    Reliable forecasts of the timing of sea ice advance are needed in order to reduce risks associatedwith operating in the Arctic as well as planning of human and environmental emergencies. This studyinvestigates the use of a simple statistical model relating the timing of ice retreat to the timing of ice advance,taking advantage of the inherent predictive power supplied by the seasonal ice-albedo feedback and oceanheat uptake. Results show that using the last retreat date to predict the ïŹrst advance date is applicable insome regions, such as BafïŹn Bay and the Laptev and East Siberian seas, where a predictive skill is found evenafter accounting for the long-term trend in both variables. Elsewhere, in the Arctic, there is some predictive skillsdepending on the year (e.g., Kara and Beaufort seas), but none in regions such as the Barents and Bering seas orthe Sea of Okhotsk. While there is some suggestion that the relationship is strengthening over time, this mayreïŹ‚ect that higher correlations are expected during periods when the underlying trend is strong

    Sea Ice Formation, Glacial Melt and the Solubility Pump Boundary Conditions in the Ross Sea

    Get PDF
    Seasonal formation of Dense Shelf Water (DSW) in the Ross Sea is a direct precursor to Antarctic Bottom Water, which fills the deep ocean with atmospheric gases in what composes the southern limb of the solubility pump. Measurements of seawater noble gas concentrations during katabatic wind events in two Ross Sea polynyas reveal the physical processes that determine the boundary value properties for DSW. This decomposition reveals 5–6 g kg−1 of glacial meltwater in DSW and sea-ice production rates of up to 14 m yr−1 within the Terra Nova Bay polynya. Despite winds upwards of 35 m s−1 during the observations, air bubble injection had a minimal contribution to gas exchange, accounting for less than 0.01 ÎŒmols kg−1 of argon in seawater. This suggests the slurry of frazil ice and seawater at the polynya surface inhibits air-sea exchange. Most noteworthy is the revelation that sea-ice formation and glacial melt contribute significantly to the ventilation of DSW, restoring 10% of the gas deficit for krypton, 24% for argon, and 131% for neon, while diffusive gas exchange contributes the remainder. These measurements reveal a cryogenic component to the solubility pump and demonstrate that while sea ice blocks air-sea exchange, sea ice formation and glacial melt partially offset this effect via addition of gases. While polynyas are a small surface area, they represent an important ventilation site within the southern-overturning cell, suggesting that ice processes both enhance and hinder the solubility pump

    Feedbacks between ice cover, ocean stratification, and heat content in Ryder Bay, western Antarctic Peninsula

    Get PDF
    A multi-year, all-season time series of water column physical properties and sea ice conditions in Ryder Bay, at the western Antarctic Peninsula (WAP), is used to assess the effects on the ocean of varying ice cover. Reduced ice cover leads to increased mixing and heat loss in the winter. The reduction in stratification persists into the following summer, preconditioning the water column to a greater vertical extent of surface-driven mixing. This leads to an increased amount of heat from insolation being mixed down, affecting approximately the top 100m. The increased heat uptake in summer exceeds the heat lost the preceding winter, giving the initially counter-intuitive effect that enhanced winter cooling generates warmer temperatures in the following summer and autumn. This process is therefore a positive feedback on sea ice, as reduced sea ice leads to increased heat content in the ocean the following autumn. It also causes increased winter atmospheric temperatures due to the increased winter heat loss from the ocean. In the deeper part of the water column, heat and carbon stored in the Circumpolar Deep Water (CDW) layer are released by deep mixing events. At these depths, conditions are restored by advection and vertical mixing on multi-year timescales. In recent years, stronger deep mixing events in winter have led to a persistent reduction in CDW temperatures at the study site. Ocean glider data demonstrate the representativeness of these results across the wider region of Marguerite Bay, within which Ryder Bay is situated

    Antarctic sea ice—A polar opposite?

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 140-151, doi:10.5670/oceanog.2012.88.As the world's ice diminishes in the face of climate change—from the dramatic decline in Arctic sea ice, to thinning at the margins of both the Greenland and Antarctic ice sheets, to retreating mountain glaciers the world over—Antarctic sea ice presents something of a paradox. The trend in total sea ice extent in the Antarctic has remained steady, or even increased slightly, over the past three decades, confounding climate model predictions showing moderate to strong declines. This apparent intransigence masks dramatic regional trends; declines in sea ice in the Bellingshausen Sea region that rival the high-profile decline in the Arctic have been matched by opposing increases in the Ross Sea. Much of the explanation lies in the unique nature of the Antarctic sea ice zone. Its position surrounding the continent and exposure to the high-energy wind and wave fields of the open Southern Ocean shape both its properties and its connection to the atmosphere and ocean in ways very different from the Arctic. Sea ice extent and variability are strongly driven by large-scale climate variability patterns such as the El Niño-Southern Oscillation and the Southern Annular Mode. Because many of these patterns have opposing effects in different regions around the continent, decreases in one region are often accompanied by similar, opposing increases in another. Yet, the failure of climate models to capture either the overall or regional behavior also reflects, in part, a poor understanding of sea ice processes. Considerable insight has been gained into the nature of these processes over the past several decades through field expeditions aboard icebreakers. However, much remains to be discovered about the nature of Antarctic sea ice; its connections with the ocean, atmosphere, and ecosystem; and its complex response to present and future climate change.Rob Massom was supported by the Australian Government’s Cooperative Research Centre programme through the ACE CRC, and this work contributes to AAS Projects 3024 and 4116 and AAD CPC Project 18

    Stable Isotope clues to the formation and evolution of refrozen melt ponds on Arctic Sea ice.

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 123(12), (2018): 8887-8901, doi:10.1029/2018JC013797.Sea ice is one of the determining parameters of the climate system. The presence of melt ponds on the surface of Arctic sea ice plays a critical role in the mass balance of sea ice. A total of nine cores was collected from multiyear ice refrozen melt ponds and adjacent hummocks during the 2015 Arctic Sea State research cruise. The depth profiles of water isotopes, salinity, and ice texture for these sea ice cores were examined to provide information about the development of refrozen melt ponds and water balance generation processes, which are otherwise difficult to acquire. The presence of meteoric water with low oxygen isotope values as relatively thin layers indicates melt pond water stability and little mixing during formation and refreezing. The hydrochemical characteristics of refrozen melt pond and seawater depth profiles indicate little snowmelt enters the upper ocean during melt pond refreezing. Due to the seasonal characters of deuterium excess for Arctic precipitation, water balance calculations utilizing two isotopic tracers (oxygen isotope and deuterium excess) suggest that besides the melt of snow cover, the precipitation input in the melt season may also play a role in the evolution of melt ponds. The dual‐isotope mixing model developed here may become more valuable in a future scenario of increasing Arctic precipitation. The layers of meteoric origin were found at different depths in the refrozen melt pond ice cores. Surface topography information collected at several core sites was examined for possible explanations of different structures of refrozen melt ponds.The coauthors (S. F. A., S. S., T. M., and B. W.) wish to thank the other DRI participants and the Captain and crew of the Sikuliaq's October 2015 cruise for their assistance in the sample collections analyzed in the paper. Jim Thomson (Chief Scientist), Scott Harper (ONR Program Manager), and Martin Jeffries (ONR Program Manager) are particularly acknowledged for their unwavering assistance and leadership during the 5 years of the SeaState DRI. We thank Guy Williams for production of the aerial photo mosaic. Funding from the Office of Naval Research N00014‐13‐1‐0435 (S. F. A. and B. W.), N00014‐13‐1‐0434 (S. S.), and N00014‐13‐1‐0446 (T. M.) supported this research through grants to UTSA, UColorado, and WHOI, respectively. This project was also funded (in part) by the University of Texas at San Antonio, Office of the Vice President for Research (Y. G. and S. F. A.). Data for the stable isotope mixing models used in this study are shown in supporting information Tables S1–S3.2019-05-1

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues

    Climate drives long-term change in Antarctic Silverfish along the western Antarctic Peninsula

    Get PDF
    Over the last half of the 20th century, the western Antarctic Peninsula has been one of the most rapidly warming regions on Earth, leading to substantial reductions in regional sea ice coverage. These changes are modulated by atmospheric forcing, including the Amundsen Sea Low (ASL) pressure system. We utilized a novel 25-year (1993–2017) time series to model the effects of environmental variability on larvae of a keystone species, the Antarctic Silverfish (Pleuragramma antarctica). Antarctic Silverfish use sea ice as spawning habitat and are important prey for penguins and other predators. We show that warmer sea surface temperature and decreased sea ice are associated with reduced larval abundance. Variability in the ASL modulates both sea surface temperature and sea ice; a strong ASL is associated with reduced larvae. These findings support a narrow sea ice and temperature tolerance for adult and larval fish. Further regional warming predicted to occur during the 21st century could displace populations of Antarctic Silverfish, altering this pelagic ecosystem

    Modeling the Seasonal Cycle of Iron and Carbon Fluxes in the Amundsen Sea Polynya, Antarctica

    Get PDF
    The Amundsen Sea Polynya (ASP) is distinguished by having the highest net primary production per unit area in the coastal Antarctic. Recent studies have related this high productivity to the presence of fast-melting ice shelves, but the mechanisms involved are not well understood. In this study we describe the first numerical model of the ASP to represent explicitly the ocean-ice interactions, nitrogen and iron cycles, and the coastal circulation at high resolution. The study focuses on the seasonal cycle of iron and carbon, and the results are broadly consistent with field observations collected during the summer of 2010–2011. The simulated biogeochemical cycle is strongly controlled by light availability(dictated by sea ice, phytoplankton self-shading, and variable sunlight). The micronutrient iron exhibits strong seasonality, where scavenging by biogenic particles and remineralization play large compensating roles. Lateral fluxes of iron are also important to the iron budget, and our results confirm the key role played by inputs of dissolved iron from the buoyancy-driven circulation of melting ice shelf cavities (the“meltwater pump”). The model suggests that westward flowing coastal circulation plays two important roles: it provides additional iron to the ASP and it collects particulate organic matter generated by the bloom and transports it to the west of the ASP. As a result, maps of vertical particulate organic matter fluxes show highest fluxes in shelf regions located west of the productive central ASP. Overall, these model results improve our mechanistic understanding of the ASP bloom, while suggesting testable hypotheses for future field efforts

    Pathways and Supply of Dissolved Iron in the Amundsen Sea (Antarctica)

    Get PDF
    Numerous coastal polynyas fringe the Antarctic continent and strongly inïŹ‚uence the productivity of Antarctic shelf systems. Of the 46 Antarctic coastal polynyas documented in a recent study, the Amundsen Sea Polynya (ASP) stands out as having the highest net primary production per unit area. Incubation experiments suggest that this productivity is partly controlled by the availability of dissolved iron (dFe).As a ïŹrst step toward understanding the iron supply of the ASP, we introduce four plausible sources of dFe and simulate their steady spatial distribution using conservative numerical tracers. The modeled distributions replicate important features from observations including dFe maxima at the bottom of deep troughsand enhanced concentrations near the ice shelf fronts. A perturbation experiment with an idealized draw-down mimicking summertime biological uptake and subsequent resupply suggests that glacial meltwaterand sediment-derived dFe are the main contributors to the prebloom dFe inventory in the top 100 m of the ASP. The sediment-derived dFe depends strongly on the buoyancy-driven overturning circulation associated with the melting ice shelves (the ‘‘meltwater pump’’) to add dFe to the upper 300 m of the water column. The results support the view that ice shelf melting plays an important direct and indirect role in the dFe supply and delivery to polynyas such as the ASP
    • 

    corecore