170 research outputs found

    Low migratory connectivity is common in long-distance migrant birds

    Get PDF
    TF benefitted from a Natural Environment Research Council studentship (student number 6109659) and AF from a Natural Environment research grant NE/K006321/1.1. Estimating how much long-distance migrant populations spread out and mix during the non-breeding season (migratory connectivity) is essential for understanding and predicting population dynamics in the face of global change. 2. We quantify variation in population spread and inter-population mixing in long- distance, terrestrial migrant land-bird populations (712 individuals from 98 populations of 45 species, from tagging studies in the Neotropic and Afro-Palearctic flyways). We evaluate the Mantel test as a metric of migratory connectivity, and explore the extent to which variance in population spread can be explained simply by geography. 3. The mean distance between two individuals from the same population during the non- breeding season was 743 km, covering 10–20% of the maximum width of Africa / South America. Individuals from different breeding populations tended to mix during the non-breeding season, though spatial segregation was maintained in species with relatively large non-breeding ranges (and, to a lesser extent, those with low population-level spread). A substantial amount of between-population variation in population spread was predicted simply by geography, with populations using non- breeding zones with limited land availability (e.g. Central America compared to South America) showing lower population spread. 4. The high levels of population spread suggest that deterministic migration strategies are not generally adaptive; this makes sense in the context of the recent evolution of the systems, and the spatial and temporal unpredictability of non-breeding habitat. 5. The conservation implications of generally low connectivity are that the loss (or protection) of any non-breeding site will have a diffuse but widespread effect on many breeding populations. Although low connectivity should engender population resilience to shifts in habitat (e.g. due to climate change), we suggest it may increase susceptibility to habitat loss. We hypothesise that because a migrant species cannot adapt to both simultaneously, migrants generally may be more susceptible to population declines in the face of concurrent anthropogenic habitat and climate change.Publisher PDFPeer reviewe

    Weak breeding seasonality of a songbird in a seasonally arid tropical environment arises from individual flexibility and strongly seasonal moult

    Get PDF
    Funding: C.J.N. was supported by a studentship funded by the Leventis Conservation Foundation through the University of St. Andrews UK and an Ubbo Emmius grant of the University of Groningen.In some tropical birds, breeding seasonality is weak at the population level, even where there are predictable seasonal peaks in environmental conditions. It therefore remains unclear whether individuals are adapted to breeding at specific times of the year or flexible to variable environmental conditions. We tested whether the relative year-round breeding activity of the Common Bulbul Pycnonotus barbatus arises due to within-individual variability in breeding dates. We collected data from 827 birds via mist-netting over two years with corresponding local weather data. We used a combination of climate envelope and generalised linear mixed models to explore how the timing of breeding is influenced by time of year, individual variation, rainfall and temperature in a West African savannah where seasonal precipitation determines annual variation in environmental conditions. We also pooled 65 breeding records from 19 individuals recorded between 2006 and 2017 based on brood patch occurrence and behavioural observation to compare within individual and population variability in breeding dates. We show that the breeding dates of individuals may be as variable as the population as a whole. However, we observed a seasonal peak in juvenile occurrence that varies significantly between years. Models suggest no relationship between nesting and moult, and within-year variation in rainfall and temperature, and birds were unlikely to breed during moult but may do afterwards. Moult was very seasonal, correlating strongly with day length. We suggest that because environmental conditions permit year-round breeding, and because reproductive output is subject to high predation risk, there is probably a weak selection for individuals to match breeding with variable peak conditions in the environment. Instead moult, which always occurs annually and successfully, is probably under strong selection to match variable peak conditions in the environment so that long term survival ensures future reproduction.Peer reviewe

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Fungal Planet description sheets: 1284–1382

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii fromagrassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis oncalcareoussoil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.)ondeadstemsof Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broad leaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.)from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), fromdeadculmsof Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Saro cladium junci, Zaanenomyces moderatricis academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.)from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.)fromleavesof Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.)from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from abio film covering adeteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis onlitterinamixedforest, Papiliotrema horticola from Malus communis , Paramacroventuria ribis (incl. Paramacroventuria gen. nov.)fromleaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii , Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi oncorticatedwood. UK, Parasitella quercicola from Quercus robur. USA , Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.)fromoffice dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.)fromatombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from airinmen'slockerroomand Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans , Micropsalliota albofelina on soil in tropical evergreen mixed forest sand Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes

    A Measurement of the Proton Structure Function F ⁣2(x,Q2)F_{\!2}(x,Q^2)

    Full text link
    A measurement of the proton structure function F ⁣2(x,Q2)F_{\!2}(x,Q^2) is reported for momentum transfer squared Q2Q^2 between 4.5 GeV2GeV^2 and 1600 GeV2GeV^2 and for Bjorken xx between 1.81041.8\cdot10^{-4} and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that F ⁣2F_{\!2} increases significantly with decreasing xx, confirming our previous measurement made with one tenth of the data available in this analysis. The Q2Q^2 dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to F ⁣2F_{\!2}.Comment: 32 pages, ps, appended as compressed, uuencoded fil

    Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA

    Get PDF
    Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy
    corecore