53 research outputs found

    Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance

    Get PDF
    Schlueter U, Colmsee C, Scholz U, et al. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics. 2013;14(1): 442.Background: Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results: To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C-4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions: Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C-4 maize leaves were particularly sensitive to P starvation

    A dynamic reconstruction approach for cerebral blood flow quantification with an interventional C-arm CT

    Full text link
    Tomographic perfusion imaging is a well accepted method for stroke diagnosis that is available with current CT and MRI scanners. A challenging new method, which is currently not available, is perfusion imaging with an interventional C-arm CT that can acquire 4-D images using a C-arm angiography system. This method may help to optimize the workflow du-ring catheter-guided stroke treatment. The main challenge in perfusion C-arm CT is the comparably slow rotational speed of the C-arm (approximately 5 seconds) which decreases the overall temporal resolution. In this work we present a dyna-mic reconstruction approach optimized for perfusion C-arm CT based on temporal estimation of partially backprojected volumes. We use numerical simulations to validate the algo-rithm: For a typical configuration the relative error in estima-ted arterial peak enhancement decreases from 14.6 % to 10.5% using the dynamic reconstruction. Furthermore we present in-itial results obtained with a clinical C-arm CT in a pig model. 1

    Randomized comparison of oesophageal protection with a temperature control device: results of the IMPACT study.

    Get PDF
    AIMS : Thermal injury to the oesophagus is an important cause of life-threatening complication after ablation for atrial fibrillation (AF). Thermal protection of the oesophageal lumen by infusing cold liquid reduces thermal injury to a limited extent. We tested the ability of a more powerful method of oesophageal temperature control to reduce the incidence of thermal injury. METHODS AND RESULTS : A single-centre, prospective, double-blinded randomized trial was used to investigate the ability of the ensoETM device to protect the oesophagus from thermal injury. This device was compared in a 1:1 randomization with a control group of standard practice utilizing a single-point temperature probe. In the protected group, the device maintained the luminal temperature at 4°C during radiofrequency (RF) ablation for AF under general anaesthesia. Endoscopic examination was performed at 7 days post-ablation and oesophageal injury was scored. The patient and the endoscopist were blinded to the randomization. We recruited 188 patients, of whom 120 underwent endoscopy. Thermal injury to the mucosa was significantly more common in the control group than in those receiving oesophageal protection (12/60 vs. 2/60; P = 0.008), with a trend toward reduction in gastroparesis (6/60 vs. 2/60, P = 0.27). There was no difference between groups in the duration of RF or in the force applied (P value range= 0.2-0.9). Procedure duration and fluoroscopy duration were similar (P = 0.97, P = 0.91, respectively). CONCLUSION : Thermal protection of the oesophagus significantly reduces ablation-related thermal injury compared with standard care. This method of oesophageal protection is safe and does not compromise the efficacy or efficiency of the ablation procedure

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    Time density curve analysis for C-arm FDCT PBV imaging

    No full text
    • …
    corecore