114 research outputs found

    Ghrelin

    Get PDF
    This work was supported by grants from the NIH (DP2DK105570-01 and 2P30DK046200 to MLA, DK21397 to HJG, K01DK098319 to KMH, K01MH091222 to LH, DK093848 to RJS, R01DK082590 to LS, R01DK097550 to JT, RO1 DK 076037 to MOT, R01DA024680 and R01MH085298 to JMZ, R01AG019230 and R01AG029740 to RGS) The Wellcome Trust (MK), Science Foundation Ireland (12/YI/B2480 to CWL), the Alexander von Humboldt Foundation (MHT), the Deutsches Zentrum fĂŒr Diabetesforschung (MHT), the Helmholtz Alliance ICEMED e Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Networking Fund of the Helmholtz Association (MHT), and the Helmholtz cross-program topic “Metabolic Dysfunction” (MHT). Allan Geliebter was sponsored by NIH grants R01DK80153; R01DK074046; R03DK068603; P30DK26687

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Defensive responses by a social caterpillar are tailored to different predators and change with larval instar and group size

    Get PDF
    Gregariousness in animals is widely accepted as a behavioral adaptation for protection from predation. However, predation risk and the effectiveness of a prey’s defense can be a function of several other factors, including predator species and prey size or age. The objective of this study was to determine if the gregarious habit of Malacosoma disstria caterpillars is advantageous against invertebrate natural enemies, and whether it is through dilution or cooperative defenses. We also examined the effects of larval growth and group size on the rate and success of attacks. Caterpillars of M. disstria responded with predator-specific behaviors, which led to increased survival. Evasive behaviors were used against stinkbugs, while thrashing by fourth instar caterpillars and holding on to the silk mat by second instar caterpillars was most efficient against spider attacks. Collective head flicking and biting by groups of both second and fourth instar caterpillars were observed when attacked by parasitoids. Increased larval size decreased the average number of attacks by spiders but increased the number of attacks by both stinkbugs and parasitoids. However, increased body size decreased the success rate of attacks by all three natural enemies and increased handling time for both predators. Larger group sizes did not influence the number of attacks from predators but increased the number of attacks and the number of successful attacks from parasitoids. In all cases, individual risk was lower in larger groups. Caterpillars showed collective defenses against parasitoids but not against the walking predators. These results show that caterpillars use different tactics against different natural enemies. Overall, these tactics are both more diverse and more effective in fourth instar than in second instar caterpillars, confirming that growth reduces predation risk. We also show that grouping benefits caterpillars through dilution of risk, and, in the case of parasitoids, through group defenses. The decreased tendency to aggregate in the last larval instar may therefore be linked to decreasing predation risk

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link

    Beyond Structural Genomics for Plant Science

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • 

    corecore