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Abstract:  12 

Gregariousness in animals is widely accepted as a behavioral adaptation for 13 

protection from predation. However, predation risk and the effectiveness of a prey’s 14 

defense can be a function of several other factors, including predator species, and prey 15 

size or age. The objective of this study was to determine if the gregarious habit of 16 

Malacosoma disstria caterpillars is advantageous against invertebrate natural enemies, 17 

and whether it is through dilution or cooperative defenses. We also examined the effects 18 

of larval growth and group size on the rate and success of attacks.  19 

Caterpillars of M. disstria responded with predator-specific behaviors, which led 20 

to increased survival. Evasive behaviors were used against stinkbugs, while thrashing by 21 

fourth instar caterpillars and holding on to the silk mat by second instar caterpillars was 22 

most efficient against spider attacks. Collective head flicking and biting by groups of 23 

both second and fourth instar caterpillars were observed when attacked by parasitoids.  24 

Increased larval size decreased the average number of attacks by spiders but 25 

increased the number of attacks by both stinkbugs and parasitoids. However, increased 26 

body size decreased the success rate of attacks by all three natural enemies, and increased 27 

handling time for both predators.  28 

Larger group sizes did not influence the number of attacks from predators but 29 

increased the number of attacks and the number of successful attacks from parasitoids. In 30 

all cases, individual risk was lower in larger groups. Caterpillars showed collective 31 

defenses against parasitoids but not against the walking predators.  32 

These results show that caterpillars use different tactics against different natural 33 

enemies. Overall, these tactics are both more diverse and more effective in fourth instar 34 
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than in second instar caterpillars, confirming that growth reduces predation risk. We also 35 

show that grouping benefits caterpillars through dilution of risk, and, in the case of 36 

parasitoids, through group defenses. The decreased tendency to aggregate in the last 37 

larval instar may therefore be linked to decreasing predation risk.  38 

 39 
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Introduction:  40 

Many animals live in groups, and gregariousness has been shown to provide 41 

protection from predation in a variety of taxa such as anuran larvae (DeVito 2003; Smith 42 

and Awan 2009), fish (Krause and Godin 1995), invertebrates (Clark and Faeth 1997; 43 

Uetz et al. 2002; Lemos et al. 2005), small mammals (Hass and Valenzuela 2002; 44 

Rogovin et al. 2004), ungulates (Mooring and Hart 1992) and many others. Predation risk 45 

and the effectiveness of a prey’s defense can be a function of several variables, including 46 

prey group size, and individual prey size as a function of age (Botham et al. 2006; Smith 47 

and Awan 2009). Although larger groups of prey may be more easily discovered and may 48 

suffer more frequent attacks due to increased conspicuousness, hunting success of 49 

predators and per capita predation risk of prey have also been shown to decrease in larger 50 

groups (Lawrence 1990; Clark and Faeth 1997; Hunter 2000; Botham et al. 2005). Group 51 

members may suffer a lower risk of capture because of cooperative defense, enhanced 52 

advertisement of unprofitability in aposematic species, shared and more effective 53 

vigilance and a reduced probability of predation by virtue of a dilution effect when a 54 

predator can take only a limited number of individuals from the group (e.g Seyfarth et al. 55 

1980; Peterson et al. 1987; Vulinec 1990; Mooring and Hart 1992; Uetz et al. 2002; 56 

DeVito 2003). In addition, animals in the centre of a group can decrease their risk of 57 

predation by surrounding themselves with others (Tostowaryk 1971; Mooring and Hart 58 

1992; Krause et al. 1998), which Hamilton (1971) termed the selfish herd effect.  59 

As prey individuals grow, their vulnerability to predators can also change. Smaller 60 

predator species may not be physically capable of handling large prey, or the costs of 61 

subduing them may be too great (Peters 1983; Warren and Lawton 1987; Cohen et al. 62 
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1993), whereas larger predator species may avoid small prey because they are too costly 63 

to handle for the energy gains. Gaston et al. (1997) found that the body masses of the bird 64 

species feeding on successive instars of the mopane worm were strongly correlated with 65 

the larvae’s mass. The ability of pentatomid predators to subdue caterpillars also depends 66 

on the larvae’s size and behavior (Iwao and Wellington 1970).  67 

Most prey are subject to predation from multiple predators, and different defenses 68 

are thought to have evolved in response to selective pressures from different types of 69 

predators. As such, different predators may elicit different responses, or a prey species 70 

may adopt a general response which provides protection from many different types of 71 

predator (Botham et al. 2006). Generalized rather than species-specific responses may 72 

benefit prey in species that co-occur with multiple similar predators (Webb et al. 2010), 73 

hence the importance of testing the effectiveness of a prey’s defensive mechanisms 74 

against different predators. Yet many studies investigating behavioral responses in 75 

predator-prey interactions have focused on single predators, and experimental evidence 76 

that prey benefit in terms of survival by adopting different responses to different 77 

predators appears to be lacking (Botham et al. 2006; Castellanos and Barbosa 2006).  78 

We examined the responses of Malacosoma disstria caterpillars against three 79 

natural enemies and tested the effects of larval growth and gregarious behavior on the 80 

rate and success of attacks. Caterpillars of M. disstria are gregarious until the final larval 81 

stadium, and decreased predation risk is often listed among the benefits of group-living 82 

for this (Parry et al. 1998) and other gregarious caterpillar species (Reader and Hochuli 83 

2003). Malacosoma disstria caterpillars are collective nomadic foragers and use 84 

pheromone trails to travel as a cohesive group between feeding sites. These caterpillars 85 
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hatch in early spring when food quality is high and they develop rapidly to escape 86 

predation (Parry et al. 1998), as predation risk is thought to decrease with increasing 87 

larval size (Costa 1993; Reavey 1993). The importance of predation in shaping the 88 

gregarious and fast-developing life history traits is not known, nor is the identity of the 89 

predators exerting the selection pressure. Caterpillars of M. disstria are unpalatable to 90 

most vertebrates (Heinrich 1983; Heinrich 1993a), but little is known of the defensive 91 

mechanisms against invertebrate predators (see Fitzgerald 1995). Synchronous flicking of 92 

the body has been described for many social caterpillars (see Fitzgerald and Costa 1999 93 

and references therein), and some, such as the closely-related Malacosoma americanum, 94 

also combine these displays with defensive regurgitation of enteric fluid containing host-95 

derived benzaldehyde when attacked by predatory ants (Peterson et al. 1987).  96 

The objective of this study was to determine if the gregarious habit of M. disstria 97 

is advantageous against invertebrate predation, and whether it is through dilution or 98 

cooperative defenses. We also hypothesized that the rate and success of attacks would 99 

decrease with increasing group size and caterpillar size (as a function of larval instar), but 100 

that these could vary between the three natural enemies tested, depending on the 101 

behavioral response exhibited in each case.  102 

 103 

Methodology: 104 

Unhatched egg masses of M. disstria were collected from Southern Ontario, 105 

Canada (44°33.5N, 76°24.1W) in March 2009 and stored at 4ºC with 80% R.H. until use. 106 

To minimize mortality from pathogens, egg bands were sterilized by soaking in 5% 107 

sodium hypochlorite as described by Grisdale (1985). Caterpillar colonies arising from a 108 
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single egg mass were kept in plastic rearing containers and kept in a rearing chamber 109 

under a controlled light and temperature regime of 21°C, 70% RH and 16L: 8D. 110 

Caterpillars were fed ad libitum on a nutritionally balanced, standard wheat germ-based 111 

meridic artificial diet (Addy 1969). Although M. disstria caterpillars have never been 112 

observed to regurgitate, gut content may affect predation and so caterpillars were given 113 

fresh leaves of their primary host, trembling aspen (Populus tremuloides), 24 hrs before 114 

being used in experiments with the walking predators. Leaves were collected from 115 

multiple trees in Montreal, Quebec and were sterilized using 1% hypochlorite solution 116 

and rinsed with tap water against the possible presence of pathogens. All experiments 117 

were conducted at temperatures ranging between 20-23°C and 50-60% RH.  118 

Fifteen species of hemipteran stinkbugs are known to prey on tent caterpillars, but 119 

Podisus maculiventris Say is one of the most common and it is distributed over most of 120 

the United States and southern part of Canada. Stinkbugs overwinter as adults and are 121 

active in early spring, searching for prey and responding within a short distance or after 122 

physical contact (Evans 1982). When a prey is detected, stinkbugs stretch out their 123 

proboscis before eventually attacking by inserting their stylets. Stinkbugs appear limited 124 

to attacking caterpillars of 20 mm or less (Evans 1982). Beetles in the genus Calosoma 125 

are also well-known predators of tent caterpillars, which are grasped and cut in half with 126 

sharp mandibles (Fitzgerald and Costa 1999 and references therein). Spiders are also 127 

important generalist predators, especially of earlier instars (McClure and Despland 2010; 128 

Ronnas et al. 2010). Although many species of parasitoids attack the eggs or pupae of 129 

Malacosoma, a few families also attack the larval stage (see Fitzgerald 1995 and 130 

references therein; Williams et al. 1996). Malacosoma caterpillars are known for flicking 131 
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the anterior portion of their body when attacked by parasitoids, and this behavior quickly 132 

propagates through the group into a synchronized behavior. Prop (1960) found that such 133 

group displays in gregarious sawflies deterred oviposition by an ichneumonid parasitoid.  134 

Three invertebrate predators, which co-occur with M. disstria, were therefore 135 

initially selected: stinkbugs (Podisus maculiventris) were obtained from The Bug Factory 136 

(Canada) and carabid beetles (Calosoma sp.) and spiders (Thanatus vulagaris) were 137 

collected in Montreal (Quebec, Canada). However, in preliminary trials (N=6) carabid 138 

beetles were found to be too mobile, with beetles escaping the set-up often without 139 

contacting the group of caterpillars (N=4), and were subsequently not used. A generalist 140 

parasitoid wasp (Hyposoter fugitivus) was also selected and was obtained from Dr. 141 

Stoltz’s rearing colony (Dalhousie Univeristy in Halifax, Canada). All walking predators 142 

were starved 24h before use and a predator used in a test was not used again until it had 143 

fed and again been deprived of food. The predators were fed larvae of the greater wax 144 

moth, Galleria mellonella, and were supplied with moisture via a soaked paper towel. 145 

The parasitoids were fed with honey droplets. All walking predators were maintained in 146 

rearing chambers under a controlled light and temperature regime of 21°C, 70% RH and 147 

16L: 8D, and parasitoids were stored at 10°C until use. 148 

Tested group sizes were of 2, 10 and 30 second or fourth instar caterpillars. Only 149 

second and fourth instar caterpillars were studied during our experiments, as they reflect 150 

distinct differences in both body size and group behaviour (older caterpillars exhibit more 151 

independent locomotion). The experimental set-up consisted of a plastic arena (43 cm 152 

long x 3 cm) covered in brown paper. The arena was balanced on rubber stoppers covered 153 

in acetate, placed in a tray containing 2 cm of water in order to prevent caterpillars from 154 
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leaving. Caterpillars were placed at one end of the arena 20 minutes before the 155 

introduction of a predator or 2 parasitoids to allow them to acclimatize and caterpillars 156 

were only used once. When using parasitoids, the experimental setup was placed in a 157 

mesh cage.  158 

All group size, instar and natural enemy combinations were repeated 20 times. 159 

Experiments were terminated after 20 min for predators and 40 min for parasitoids. This 160 

was considered enough time to observe an attack, as on average predators attacked in less 161 

than 1 minute (mean±SE of 49.22±11.49 secs), and parasitoids did so in less than 8 162 

minutes (mean±SE of 7.96±1.10 min). A video camera was mounted above the arena and 163 

all experiments were recorded for further analysis. The likelihood of attack in each 164 

treatment was analysed using chi-square. A multivariate analysis of variance 165 

(MANOVA) was used for each natural enemy to determine if the number of caterpillars 166 

attacked and the number of those attacks that were successful was significantly affected 167 

by group size and/or larval instar. The MANOVA for both walking predators also 168 

included the latency to attack (i.e. the time from the moment the predator is introduced 169 

into the arena to the first attack observed) and the handling time (i.e. the time required for 170 

a predator to subdue its prey) as dependent variables. In addition, the MANOVA for the 171 

stinkbugs also included the time needed to perceive the caterpillars (determined as when 172 

the proboscis was raised). The MANOVA for the parasitoids included the time caterpillar 173 

groups spent head flicking after an attack as a dependent variable. Behavioral 174 

descriptions of predator or parasitoid attacks and escape responses of caterpillars were 175 

also noted for every predator-prey combination. Parasitizing success was determined by 176 

rearing some of the groups (a minimum of 7 replicates per group size-instar combination 177 
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was used for a total of N=45) until parasitoid emergence. Mortality risk per caterpillar 178 

from each natural enemy was also calculated by dividing the number of individuals 179 

within a group by the number of successful attacks and averaging them for all larval 180 

instar and group sizes.  181 

 182 

Results: 183 

Although these caterpillars are covered in setae, especially in the later instars, 184 

observations during this study gave no indication that they played any role in defense 185 

against the predators and parasitoids that were used. Because spiders and stinkbugs are 186 

only capable of predating one individual at a time and require time to consume it, there 187 

could not be more than one successful attack per given trial. However, when 188 

unsuccessful, multiple attacks by these predators could be made within a single trial. 189 

Malacosoma disstria caterpillars were never observed to regurgitate. Group activity 190 

(defined as either active or resting) was never a significant predictor of either attacks or 191 

the success of these attacks for any of the natural enemies.  192 

 193 

Carabid beetles 194 

Preliminary trials with carabid beetles (N=6) were done with groups of 30 fourth 195 

instar caterpillars, but proved to be difficult as the carabid beetles were large and too 196 

mobile for the chosen experimental set-up. In 4 of the trials, the beetle repeatedly escaped 197 

the set-up without making contact with the caterpillars. In 2 trials, the beetle attacked 1 198 

caterpillar within the group and quickly devoured it. Predated individuals thrashed 199 

vigorously, but were never successful at escaping. The group’s response consisted of all 200 
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caterpillars walking away and relocating at the opposite end of the bridge set-up while the 201 

predator was occupied with its prey. Although carabid beetles have been described as 202 

being aggressive predators which often attack multiple caterpillars within a group, only 203 

one individual was observed to be attacked (N=2). Both beetles subsequently escaped the 204 

set-up shortly after the predation events.  205 

 206 

Spiders 207 

Spiders attacked by pouncing on the caterpillars and rapidly piercing them with 208 

their chelicerae. Responses of caterpillars attacked by spiders were different for second 209 

and fourth instars (Table 1). Although 42% of second instar caterpillars thrashed when 210 

grasped and a small number bit the spiders (5%), this was never successful. Surprisingly, 211 

52% of the attacked caterpillars responded by gripping onto the silk mat: when spiders 212 

were unable to dislodge the caterpillar from its silk mat, they abandoned it. This tactic 213 

was successful in evading a predation event 80% of the time and bitten caterpillars that 214 

were abandoned always survived. Although this is not a group response per se, a group is 215 

needed to build a silk mat and this response was therefore not possible for individuals in 216 

groups of two. The larger fourth instar caterpillars were more aggressive in their 217 

responses. All individuals that were attacked thrashed vigorously. When not combined 218 

with any other behavior, this was successful in only 37% of attacks. Survival was similar 219 

when thrashing was combined with biting, but increased if caterpillars dropped off the 220 

bridge, which was always an effective evasive tactic. This would also be advantageous in 221 

the field as larger caterpillars can survive in the absence of conspecifics (Fitzgerald and 222 

Costa 1999).  223 
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For spiders, the time to attack (i.e. the latency for the spider to attack from the 224 

moment it is introduced) was not significantly influenced by group or larval size, but 225 

handling time was much longer for fourth instar caterpillars than for second instar 226 

caterpillars (162.00±33.87s vs. 2.58±0.33s; Table 2). The probability of at least one 227 

attack occurring during the trial decreased with larval instar (χ
2
=4.805; df=1; p=0.028) 228 

but was not affected by group size (χ
2
=1.669; df=2; p=0.434). The number of attacks per 229 

trial increased with group size for second but decreased for fourth instar caterpillars (Fig. 230 

1). Attacks on fourth instar caterpillars were less likely to be successful than on second 231 

instar caterpillars. Attack success rate was not affected by group size (Table 2), and 232 

therefore the per capita mortality risk decreased in larger groups (Fig. 4). Position within 233 

the group was also found to be important, as the centre of the group sustained fewer 234 

attacks.  235 

 236 

Stinkbugs 237 

Caterpillars responded differently to stinkbugs, which after detecting the 238 

caterpillars raised their proboscis and approached them slowly, than they did to spiders. 239 

When second instar caterpillars detected the stinkbug before an attack (which occurred in 240 

10% of cases), they took evasive responses by jerking away (Table 1). This was always 241 

successful as stinkbugs retreated. Once the predator had inserted its stylets into the 242 

caterpillar, none succeeded in escaping despite 60% of caterpillars thrashing in response 243 

to the attack. Fourth instar caterpillars showed a larger range of behavioral responses to 244 

stinkbugs, which occurred either singly or in various combinations. Caterpillars took 245 

evasive measures in 37% of cases, either by walking quickly out of the predator’s path or 246 
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by jerking away, and this was always successful in evading an attack. Predators were 247 

sometimes seen pursuing an escaping caterpillar with extended proboscis, but they never 248 

succeeded in catching them and quickly gave up the chase. Caterpillars responded to the 249 

stylets being inserted into their body by thrashing 56% of the time, but this was only 250 

effective in 17% of cases, even when combined with biting. Although only very few 251 

attacked caterpillars were able to both thrash and fall off the bridge (2%), this was always 252 

a successful tactic and these caterpillars always survived the piercing of their cuticle.  253 

Whether stinkbugs attacked at least once was not significantly affected by either 254 

instar (χ
2
=1.634; df=1; p=0.201) or group size (χ

2
=2.467; df=2; p=0.291). Stinkbugs 255 

launched more attacks per trial against fourth instar caterpillars, but were more successful 256 

in capturing second instar caterpillars (Fig. 2). Again, because the number of successful 257 

attacks was not affected by group size, the mean mortality risk decreased with group size 258 

(Fig. 4). The time needed for stinkbugs to perceive the caterpillars (i.e. the time between 259 

introducing the stinkbug to the arena and the first moment they raised their proboscis) 260 

was not affected by either larval instar or group size (Table 2), but both the amount of 261 

time required to attack (35.68±10.43s vs. 200.57±43.29s; Table 2) and to subdue the prey 262 

(i.e. for the attacked caterpillar to stop moving) (25.58±3.64s vs. 168.95±32.15s; Table 1) 263 

was significantly longer for fourth instar caterpillars. Position within the group was again 264 

found to be important, as the centre of the group did not sustain any attack for either the 265 

second or fourth instar caterpillars. 266 

 267 

Parasitoid wasps 268 
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Caterpillars reacted to parasitoid attacks, which stung the caterpillars with their 269 

ovipositor, both individually and as a group by flicking their heads, and in some cases, 270 

head flicking was accompanied by biting, which made it a far more effective tactic (Table 271 

1). Groups of two second instar caterpillars almost never reacted to being attacked. 272 

However, for both second and fourth instar caterpillars, groups of 30 were more likely to 273 

use biting along with flicking than groups of 10 caterpillars.  274 

The probability of at least one attack by a parasitoid per trial significantly 275 

increased with group size (χ
2
=9.872; df=2; p=0.007) but was not affected by larval instar 276 

(χ
2
=0.573; df=1; p=0.449). The number of attacks increased with caterpillar instar (Fig. 277 

3), but the number of successful attacks (i.e. determined by the subsequent emergence of 278 

a parasitoid from the caterpillar) decreased with instar (Table 2). The number of attacks 279 

and of successful attacks increased with group size (Fig. 3), but the individual mortality 280 

risk still decreased with group size (Fig. 4). The time before an attack (i.e. time elapsed 281 

between the start of the experiment and the first attack observed) was not influenced by 282 

either caterpillar instar or group size, but the amount of time caterpillars spent head 283 

flicking after an attack significantly increased with group size (Table 2). Position within 284 

the group was again found to be important, as the centre of the group sustained fewer 285 

attacks.  286 

 287 

Discussion 288 

Caterpillars of M. disstria responded to attacks with predator-specific behaviors, 289 

which in many cases were successful in warding off attacks. When stinkbugs were used 290 

as predators, evasive behaviors were the most efficient in increasing survival, as has also 291 
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been observed for Nezara viridula (De Clercq et al. 2002) and Bombyx mori (Lemos et 292 

al. 2005) caterpillars. These behaviors were never observed against spiders. Many fourth 293 

instar caterpillars thrashed when attacked by either spiders or stinkbugs, but this behavior 294 

was most successful when used against spiders. Second instar caterpillars that were 295 

attacked by spiders sometimes responded by holding onto the silk mat. This behavior was 296 

never observed with stinkbugs, and it would not likely have been successful, as shriveled 297 

caterpillar carcasses are often found still attached to naturally occurring tents and silk 298 

mats of Malacosoma colonies attacked by Podisus stinkbugs. Head flicking and biting 299 

were observed in both second and fourth instar caterpillars when attacked by parasitoids, 300 

but not when attacked by walking predators. Predator specific responses of M. disstria 301 

groups were also observed during preliminary trials using Calosoma beetles: attacked 302 

individuals thrashed vigorously, but unsuccessfully as even fourth instar caterpillars are 303 

much smaller than the beetles. But while the beetle was busy with one prey, the rest of 304 

the caterpillar group moved away together and relocated to a new bivouac elsewhere, 305 

which is important because a single beetle can eradicate an entire colony (Fitzgerald and 306 

Costa 1999). Other studies (e.g. Clark and Faeth 1997) have shown that, if predators are 307 

not satiated by a single prey item, or if they show a strong and very rapid numerical 308 

response, they can annihilate entire groups and group relocation may beneficial. Indeed, 309 

groups of M. disstria caterpillars have also been shown to relocate their bivouac in 310 

response to attacks by Polistes wasps (McClure and Despland 2010). However, relocation 311 

of the entire group before a food patch is depleted is likely costly, and it makes sense that 312 

this response would only be observed when caterpillar groups are attacked by predators 313 

capable of successfully predating most, if not all, of the group.  314 
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Although different responses to different predators is believed to be adaptive and 315 

has previously been suggested, little experimental work has been done to empirically 316 

demonstrate the behavioral ecology of defenses (Botham et al. 2006).  317 

The escape responses of M. disstria caterpillars to predator attacks also varied 318 

with larval instar. Smaller caterpillars had fewer defensive behaviors and never dropped 319 

off the bridge, probably because the cost of being separated from the group is much 320 

higher for younger caterpillars (Despland and Le Huu 2007). Although second instar 321 

caterpillars were at times aggressive against parasitoids, biting their legs and antennae, 322 

they never successfully bit either the spiders or the stinkbug predators, both of which are 323 

larger than the parasitoids. The larger fourth instar caterpillars, however, were more 324 

likely to defend themselves with aggressive retaliation such as biting against all 325 

predators, as the value of this defense increases with the size of the prey relative to its 326 

predator.  327 

As such, the number of caterpillars successfully predated or parasitized decreased 328 

with increasing body size, and the time required to subdue the prey increased for both 329 

spiders and stinkbugs. However, stinkbugs and parasitoids did attack fourth instar 330 

caterpillars more often. Because stinkbugs are cautious predators that slowly approach 331 

their prey, failed attempts often occurred before any physical contact was made. As such, 332 

attempting to attack a larger caterpillar was possibly less costly for stinkbugs than for 333 

spiders, and in fact, stinkbugs were more likely to try again. However, this is likely to 334 

change with continued growth of the caterpillars and more aggressive defensive 335 

behaviours (Morris 1963), and in fact Evans (1983) observed that stinkbugs experienced 336 

increasing difficulty in capturing Malacosoma caterpillars as the season advanced. As the 337 
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caterpillars grew, they rapidly gained the ability to defend themselves from attacking 338 

adult stinkbugs by thrashing vigorously and forcing the timid stinkbugs to retreat and 339 

abandon the attack.  340 

Although parasitoids can develop in second instar caterpillars, they face a higher 341 

risk of the host dying before the parasitoid larvae can complete its development (pers. 342 

obs.). Therefore fourth instar caterpillars are better hosts and this is most likely why 343 

parasitoids preferentially attacked more of the fourth instar caterpillars. Yet the 344 

proportion of caterpillars successfully parasitized decreased with increasing larval size, 345 

which suggests a trade-off for parasitoids. This may be due to both an increasing 346 

difficulty in successfully parasitizing the caterpillars due to defensive behaviours such as 347 

biting, and a stronger immune system in older caterpillars. As such, successful parasitism 348 

is likely to continue decreasing with increasing growth of the caterpillars. Thus overall 349 

increased body size lowers likelihood of successful attack for all three natural enemies 350 

but, at least for parastioids, larval body size appears to increase attractiveness of prey.  351 

Grouping appeared to lower individual risk from all three natural enemies via 352 

dilution and the selfish herd effect. In all three cases, individual risk decreased with 353 

increasing group size and individuals in the center of the group were at a lesser risk of 354 

sustaining attacks than individuals situated at the periphery.  355 

For spiders and stinkbugs, group size had no effect on the number of attacks or 356 

the number of successfully captured caterpillars. Because the number of prey successfully 357 

attacked was never more than one per trial, mortality risk always decreased with group 358 

size. There were no group responses for either second or fourth instar caterpillars 359 

attacked by either of the walking predators and therefore, against these predators, dilution 360 
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of risk appears to be the only group benefit. Presumably, larger aggregations would be 361 

beneficial in the field if they do not attract more predators. For the gregarious caterpillar 362 

Halisidota caryae (Lawrence 1990), larger aggregations did not attract more invertebrate 363 

predators than did smaller ones, and so the likelihood of being taken was lower in a larger 364 

group. For Malacosoma species, Evans (1983) found that the density of caterpillars in a 365 

group was always high enough that the functional response of a pentatomid predator was 366 

independent of larval density.  367 

By contrast, collective defense was observed against parasitoids. The parasitoids 368 

attacked more than one caterpillar once a group was located. However, despite multiple 369 

attacks and a higher attack success rate, mean mortality still decreased for individual 370 

caterpillars living in larger groups. The number of individuals successfully parasitized did 371 

not increase as rapidly as the number of individuals within a group. This may in part be 372 

because the optimal foraging time spent at a patch for parasitoids is limited by a 373 

diminishing return (Wajnberg 2006), but may also be due to the increasing difficulty in 374 

attacking defensive groups.  375 

Indeed, although there was no evidence for group vigilance in trials done with 376 

spiders or stinkbugs, caterpillars appeared to benefit from the warning of a parasitoid’s 377 

presence, possibly through the wing vibrations of parasitoids, vibrations in the silk mat 378 

generated by flicking caterpillars, and/or through the direct physical contact with flicking 379 

caterpillars, although they don’t appear to respond to vibrations caused by approaching 380 

predators or by thrashing conspecifics. Caterpillars attacked by the parasitoids usually 381 

aggregated as tight flicking groups and displayed co-operative defenses such as 382 

simultaneous biting of the wasps’ legs and antennae. Individuals who started flicking 383 
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before having sustained an attack themselves therefore appear to be benefiting from the 384 

signaling of other individuals, but those who have already been attacked also benefit as 385 

they may be attacked more than once (pers. obs.). Although groups of two caterpillars 386 

occasionally displayed these behaviors, they occurred less often, at a lower intensity and 387 

for a shorter time. The time spent flicking by groups after the first attack also increased 388 

with group size, which suggests that the effectiveness of this behaviour increases for 389 

larger groups.  390 

In conclusion, we show that M. disstria exhibit different behaviours in response to 391 

different predators and at different larval stadia. Like guppies (Botham et al. 2006) and 392 

monkeys (Seyfarth et al. 1980), these caterpillars are able to discriminate between 393 

different predators, likely as a result of very different modes of attack, and respond 394 

appropriately. Indeed, this study shows experimentally that prey benefit in terms of 395 

survival by adopting different responses, although how these caterpillars are able to 396 

identify the predator and decide which response to makes has yet to be determined.  397 

In general, fourth instar caterpillars showed more varied defensive responses, 398 

including falling off the bridge and biting the aggressor, and were more successful 399 

against all three natural enemies. Our results confirm that larval vulnerability is greatest 400 

in the early larval instars, supporting the idea that rapid growth constitutes a defensive 401 

benefit. An extended development time in herbivorous insects increases larval exposure 402 

to natural enemies, termed the slow-growth-high-mortality hypothesis, and has been 403 

shown in many species (Schultz 1983; Benrey and Denno 1997). For example, Parry et 404 

al. (1998) found that survivorship of later hatching Malacosoma caterpillars was 405 

drastically reduced by invertebrate predation and Evans (1982) observed that during 406 
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unfavorable weather in the spring, the activity of predatory stinkbugs was temporarily 407 

suppressed and enabled the tent caterpillars to escape predation by growing to sizes too 408 

large to be subdued by the predators. We show that increased size is advantageous for 409 

caterpillars against three very different modes of attack, due not only to the predator’s 410 

difficulty in handling larger prey, but also to the caterpillar’s broader range of defensive 411 

behaviors. Our results also show a lower per capita predation risk in larger groups. In the 412 

case of spiders and stinkbugs, the benefits of grouping could only be attributed to dilution 413 

of risk, but against parasitoids, caterpillars also exhibited group defenses. Improved anti-414 

predator defense has been suggested as a benefit to group living in a wide range of taxa 415 

(e.g. Hass and Valenzuela 2002; Uetz et al. 2002; e.g. DeVito 2003; Rogovin et al. 2004; 416 

Lemos et al. 2005; Smith and Awan 2009), including many caterpillars (see Vulinec 417 

1990). We confirm that grouping does indeed protect M. disstria caterpillars against 418 

predation and that they use group defenses in some contexts. Aggregations of early 419 

instars of M. disstria have also been shown to benefit from group thermoregulation 420 

(McClure et al. 2010) which enhances larval growth rates (Levesque et al. 2002), and 421 

thus the aggregated larval lifestyle may also indirectly reduce predation by decreasing 422 

exposure to predators. Grouping thus appears to protect M disstria against predation via 423 

several simultaneously acting mechanisms: predator dilution, group defenses, faster 424 

development and possibly aposematism (Heinrich 1993b). Hunter (2000), who compared 425 

the shapes of published survivorship curves of gregarious and solitary Lepidoptera and 426 

Symphyta, concluded that there was something in addition of the possession of defenses 427 

that explains the higher larval survival of gregarious species. This study further supports 428 

their suggestion that dilution of risk, possibly in concert with increased group defense 429 
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behaviors, and reduced duration of exposure to enemies because of rapid development 430 

time may explain the survival advantage of gregariousness.  431 

Finally, the decreased tendency to aggregate of later instars of Malacosoma 432 

species has been tied to an increase in food competition (Despland and Le Huu 2007) and 433 

a reduced need for thermoregulation (McClure et al. 2010); our results suggest that it may 434 

be further enabled by caterpillars’ increased ability to defend themselves against 435 

invertebrate predators.  436 
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List of figures 

Fig. 1: Spiders: the average number of attacks and successful attacks (±SEM) for 

different group sizes of a) second and b) fourth instar caterpillars of Malacosoma disstria 

(N=20 caterpillar groups per treatment combination of instar and group size) 

 

Fig. 2: Stinkbugs: the average number of attacks and successful attacks (±SEM) for 

different group sizes of a) second and b) fourth instar caterpillars of Malacosoma disstria 

(N=20 caterpillar groups per treatment combination of instar and group size) 

 

Fig. 3: Parasitoids: the average number of attacks and successful attacks (±SEM) for 

different group sizes of a) second and b) fourth instar caterpillars of Malacosoma disstria 

(N=20 caterpillar groups per treatment combination of instar and group size) 

 

Fig. 4: The mean mortality (±SEM) per capita of Malacosoma disstria caterpillars in 

different group sizes, for both a) second and b) fourth larval instar, for different 

invertebrate predators and parasitoids (N=20 caterpillar groups per treatment combination 

of instar and group size) 
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Table 1: The behavioural response (when one was observed) elicited by an attack by an 

invertebrate predator or parasitoid, the proportion of Malacosoma disstria caterpillars 

responding and the proportion of those that were successful in escaping predation or 

parasitisation.  
     

Type of predator Instar 
Behavioral 
response % responding 

% responding 
successfully 

Spider 2 Thrashing 42 0 

  Biting 5 0 

  Holding the silk mat 53 80 

 4 thrashing 37 38 

  thrashing & biting 30 38 

  thrashing & falling 33 100 

Stinkbug 2 jerking back 11 100 

  thrashing 61 0 

 4 walking away 12 100 

  jerking back 26 100 

  thrashing 56 17 

  thrashing & biting 5 0 

  thrashing & falling 2 100 

Parasitoid 2 head flicking 70 9 

  head flicking & biting 30 30 

 4 head flicking 66 32 

  head flicking & biting 34 66 
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Table 2: Statistical results for 3 separate MANOVAs done for each natural enemy as a 

function of group size and larval instars of Malacosoma disstria caterpillars (N=120 

groups per analysis).  
      

Type of 
predator Measured variable Experimental factor F value df p value 

Spider Number of attacks Caterpillar instar 2.7 1, 114 0.103 

  Group size 0.36 2, 114 0.701 

  Interaction 3.77 2, 114 0.026* 

 Number of captures Caterpillar instar 12.26 1, 114 0.001* 

  Group size 0.27 2, 114 0.768 

  Interaction 1.02 2, 114 0.36 

 Time to attack (secs) Caterpillar instar 0.15 1, 59 0.698 

  Group size 0.08 2, 59 0.923 

  Interaction 0.93 2, 59 0.402 

 Handling time (secs) Caterpillar instar 86.38 1, 40 >0.001* 

  Group size 0.81 2, 40 0.453 

  Interaction 0.85 2, 40 0.434 

Stinkbug Number of attacks Caterpillar instar 7.94 1, 114 0.006* 

  Group size 0.37 2, 114 0.695 

  Interaction 0.16 2, 114 0.851 

 Number of captures Caterpillar instar 0.31 1, 114 0.58 

  Group size 1.27 2, 114 0.286 

  Interaction 4.42 2, 114 0.014* 

 Time to perceive (secs) Caterpillar instar 1.6 1, 78 0.214 

  Group size 0.3 2, 78 0.741 

  Interaction 0.23 2, 78 0.798 

 Time to attack (secs) Caterpillar instar 15.96 1, 78 >0.001* 

  Group size 2.63 2, 78 0.087 

  Interaction 1.8 2, 78 0.181 

 Handling time (secs) Caterpillar instar 14.28 1, 53 >0.001* 

  Group size 0.01 2, 53 0.994 

  Interaction 0.02 2, 53 0.984 

Parasitoid Number of attacks Caterpillar instar 4.16 1, 114 0.042* 

  Group size 4.75 2, 114 0.009* 

  Interaction 1.47 2, 114 0.232 

 Successfully parasitized Caterpillar instar 16.69 2, 39 >0.001* 

  Group size 20.02 1, 39 >0.001* 

  Interaction 3.22 2, 39 0.051 

 Time to attack (secs) Caterpillar instar 6.29 1, 72 0.594 

  Group size 0.002 2, 72 0.998 

  Interaction 0.33 2, 72 0.719 

 Time spent flicking (secs) Caterpillar instar 0.6 1, 72 0.441 

  Group size 26.03 2, 72 >0.001* 

    Interaction 1.32 2, 72 0.276 

      

 

 

 

 


