1,797 research outputs found

    High-end fashion manufacturing in the UK - product, process and vision: Recommendations for a Designer and Fashion Manufacturer Alliance and a Designer Innovation and Sampling Centre

    Full text link
    The Centre for Fashion Enterprise (CFE) was commissioned by the Department of Culture, Media and Sport (DCMS) to undertake a feasibility study to explore fully the market need for a new high-end production hub. This was in direct response to the need highlighted in the DCMS report, Creative Britain - New Talents For The New Economy, published in 2008. This study has confirmed that there is a need. However the need is for a sampling and innovation facility rather than a production hub. Designers reported a shortage of high quality sampling capacity in the UK, as well as difficulties in getting small quantities produced. Additionally, they do not know where or how to source appropriate manufacturing in the UK, Europe or globally, at the quality the market requires

    The Onset of Phase Transitions in Condensed Matter and Relativistic QFT

    Full text link
    Kibble and Zurek have provided a unifying causal picture for the appearance of topological defects like cosmic strings or vortices at the onset of phase transitions in relativistic QFT and condensed matter systems respectively. There is no direct experimental evidence in QFT, but in condensed matter the predictions are largely, but not wholly, supported in superfluid experiments on liquid helium. We provide an alternative picture for the initial appearance of strings/vortices that is commensurate with all the experimental evidence from condensed matter and consider some of its implications for QFT.Comment: 37 pages, to be published in Condensed Matter Physics, 200

    Towards Solving the Navier-Stokes Equation on Quantum Computers

    Get PDF
    In this paper, we explore the suitability of upcoming novel computing technologies, in particular adiabatic annealing based quantum computers, to solve fluid dynamics problems that form a critical component of several science and engineering applications. We start with simple flows with well-studied flow properties, and provide a framework to convert such systems to a form amenable for deployment on such quantum annealers. We analyze the solutions obtained both qualitatively and quantitatively as well as the sensitivities of the various solution selection schemes on the obtained solution

    Modeling the Non-linear Viscoelastic Response of High Temperature Polyimides

    Full text link
    A constitutive model is developed to predict the viscoelastic response of polyimide resins that are used in high temperature applications. This model is based on a thermodynamic framework that uses the notion that the `natural configuration' of a body evolves as the body undergoes a process and the evolution is determined by maximizing the rate of entropy production in general and the rate of dissipation within purely mechanical considerations. We constitutively prescribe forms for the specific Helmholtz potential and the rate of dissipation (which is the product of density, temperature and the rate of entropy production), and the model is derived by maximizing the rate of dissipation with the constraint of incompressibility, and the reduced energy dissipation equation is also regarded as a constraint in that it is required to be met in every process that the body undergoes. The efficacy of the model is ascertained by comparing the predictions of the model with the experimental data for PMR-15 and HFPE-II-52 polyimide resins.Comment: 16 pages, 4 figures, submitted to Mechanics of Material
    corecore