504 research outputs found
Detectability of Exoplanetary Transits from Radial Velocity Surveys
Of the known transiting extra-solar planets, a few have been detected through
photometric follow-up observations of radial velocity planets. Perhaps the best
known of these is the transiting exoplanet HD 209458b. For hot Jupiters
(periods less than ~5 days), the a priori information that 10% of these planets
will transit their parent star due to the geometric transit probability leads
to an estimate of the expected transit yields from radial velocity surveys. The
radial velocity information can be used to construct an effective photometric
follow-up strategy which will provide optimal detection of possible transits.
Since the planet-harbouring stars are already known in this case, one is only
limited by the photometric precision achieveable by the chosen
telescope/instrument. The radial velocity modelling code presented here
automatically produces a transit ephemeris for each planet dataset fitted by
the program. Since the transit duration is brief compared with the fitted
period, we calculate the maximum window for obtaining photometric transit
observations after the radial velocity data have been obtained, generalising
for eccentric orbits. We discuss a typically employed survey strategy which may
contribute to a possible radial velocity bias against detection of the very hot
Jupiters which have dominated the transit discoveries. Finally, we describe how
these methods can be applied to current and future radial velocity surveys.Comment: 11 pages, 8 figures, accepted for publication in MNRAS, minor
correctio
Competing biosecurity and risk rationalities in the Chittagong poultry commodity chain, Bangladesh
This paper anthropologically explores how key actors in the Chittagong live bird trading network perceive biosecurity and risk in relation to avian influenza between production sites, market maker scenes and outlets. They pay attention to the past and the present, rather than the future, downplaying the need for strict risk management, as outbreaks have not been reported frequently for a number of years. This is analysed as ‘temporalities of risk perception regarding biosecurity’, through Black Swan theory, the idea that unexpected events with major effects are often inappropriately rationalized (Taleb in The Black Swan. The impact of the highly improbable, Random House, New York, 2007). This incorporates a sociocultural perspective on risk, emphasizing the contexts in which risk is understood, lived, embodied and experienced. Their risk calculation is explained in terms of social consent, practical intelligibility and convergence of constraints and motivation. The pragmatic and practical orientation towards risk stands in contrast to how risk is calculated in the avian influenza preparedness paradigm. It is argued that disease risk on the ground has become a normalized part of everyday business, as implied in Black Swan theory. Risk which is calculated retrospectively is unlikely to encourage investment in biosecurity and, thereby, points to the danger of unpredictable outlier events
Four ultra-short period eclipsing M-dwarf binaries in the WFCAM Transit Survey
We report on the discovery of four ultra-short period (P<0.18 days) eclipsing
M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are
significantly shorter than of any other known main-sequence binary system, and
are all significantly below the sharp period cut-off at P~0.22 days as seen in
binaries of earlier type stars. The shortest-period binary consists of two M4
type stars in a P=0.112 day orbit. The binaries are discovered as part of an
extensive search for short-period eclipsing systems in over 260,000 stellar
lightcurves, including over 10,000 M-dwarfs down to J=18 mag, yielding 25
binaries with P<0.23 days. In a popular paradigm, the evolution of short period
binaries of cool main-sequence stars is driven by loss of angular momentum
through magnetised winds. In this scheme, the observed P~0.22 day period
cut-off is explained as being due to timescales that are too long for
lower-mass binaries to decay into tighter orbits. Our discovery of low-mass
binaries with significantly shorter orbits implies that either these timescales
have been overestimated for M-dwarfs, e.g. due to a higher effective magnetic
activity, or that the mechanism for forming these tight M-dwarf binaries is
different from that of earlier type main-sequence stars.Comment: 22 pages, 17 figures, 3 tables Accepted for publication in MNRA
Real-Time Sensing of Single-Ligand Delivery with Nanoaperture-Integrated Microfluidic Devices
The measurement of biological events on the surface of live cells at the single-molecule level is complicated by several factors including high protein densities that are incompatible with single-molecule imaging, cellular autofluorescence, and protein mobility on the cell surface. Here, we fabricated a device composed of an array of nanoscale apertures coupled with a microfluidic delivery system to quantify single-ligand interactions with proteins on the cell surface. We cultured live cells directly on the device and isolated individual epidermal growth factor receptors (EGFRs) in the apertures while delivering fluorescently labeled epidermal growth factor. We observed single ligands binding to EGFRs, allowing us to quantify the ligand turnover in real time. These results demonstrate that this nanoaperture-coupled microfluidic device allows for the spatial isolation of individual membrane proteins while maintaining them in their cellular environment, providing the capability to monitor single-ligand binding events while maintaining receptors in their physiological environment. These methods should be applicable to a wide range of membrane proteins
Concise Review: Stem/progenitor cell proteoglycans decorated with 7-D-4, 4-C-3, and 3-B-3(-) chondroitin sulfate motifs are morphogenetic markers of tissue development
This study reviewed the occurrence of chondroitin sulfate (CS) motifs 4‐C‐3, 7‐D‐4, and 3‐B‐3(‐), which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulfation motifs 7‐D‐4, 4‐C‐3, and 3‐B‐3 (‐) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. Stem Cells 201
Recommended from our members
Degradation aspects of water formation and transport in Proton Exchange Membrane Fuel Cell: A review
This review paper summarises the key aspects of Proton Exchange Membrane Fuel Cell (PEMFC) degradation that are associated with water formation, retention, accumulation, and transport mechanisms within the cell. Issues related to loss of active surface area of the catalyst, ionomer dissolution, membrane swelling, ice formation, corrosion, and contamination are also addressed and discussed. The impact of each of these water mechanisms on cell performance and durability was found to be different and to vary according to the design of the cell and its operating conditions. For example, the presence of liquid water within Membrane Electrode Assembly (MEA), as a result of water accumulation, can be detrimental if the operating temperature of the cell drops to sub-freezing. The volume expansion of liquid water due to ice formation can damage the morphology of different parts of the cell and may shorten its life-time. This can be more serious, for example, during the water transport mechanism where migration of Pt particles from the catalyst may take place after detachment from the carbon support. Furthermore, the effect of transport mechanism could be augmented if humid reactant gases containing impurities poison the membrane, leading to the same outcome as water retention or accumulation.
Overall, the impact of water mechanisms can be classified as aging or catastrophic. Aging has a long-term impact over the duration of the PEMFC life-time whereas in the catastrophic mechanism the impact is immediate. The conversion of cell residual water into ice at sub-freezing temperatures by the water retention/ accumulation mechanism and the access of poisoning contaminants through the water transport mechanism are considered to fall into the catastrophic category. The effect of water mechanisms on PEMFC degradation can be reduced or even eliminated by (a) using advanced materials for improving the electrical, chemical and mechanical stability of the cell components against deterioration, and (b) implementing effective strategies for water management in the cell
Recommended from our members
Oxidative discolouration in whole-head and cut lettuce: biochemical and environmental influences on a complex phenotype and potential breeding strategies to improve shelf-life
Lettuce discolouration is a key post-harvest trait. The major enzyme controlling oxidative discolouration
has long been considered to be polyphenol oxidase (PPO) however, levels of PPO and subsequent development of discolouration symptoms have not always correlated. The predominance of a latent state of the enzyme in plant tissues combined with substrate activation and contemporaneous suicide inactivation
mechanisms are considered as potential explanations for
this phenomenon. Leaf tissue physical properties have
been associated with subsequent discolouration and
these may be influenced by variation in nutrient
availability, especially excess nitrogen and head maturity at harvest. Mild calcium and irrigation stress has
also been associated with a reduction in subsequent
discolouration, although excess irrigation has been
linked to increased discolouration potentially through
leaf physical properties. These environmental factors,
including high temperature and UV light intensities,
often have impacts on levels of phenolic compounds
linking the environmental responses to the biochemistry
of the PPO pathway. Breeding strategies targeting the
PALand PPOpathway biochemistry and environmental
response genes are discussed as a more cost-effective
method of mitigating oxidative discolouration then
either modified atmosphere packaging or post-harvest
treatments, although current understanding of the
biochemistry means that such programs are likely to
be limited in nature and it is likely that they will need to be deployed alongside other methods for the foreseeable future
Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes
Proteomic Profile of Reversible Protein Oxidation Using PROP, Purification of Reversibly Oxidized Proteins
Signal transduction pathways that are modulated by thiol oxidation events are beginning to be uncovered, but these discoveries are limited by the availability of relatively few analytical methods to examine protein oxidation compared to other signaling events such as protein phosphorylation. We report here the coupling of PROP, a method to purify reversibly oxidized proteins, with the proteomic identification of the purified mixture using mass spectrometry. A gene ontology (GO), KEGG enrichment and Wikipathways analysis of the identified proteins indicated a significant enrichment in proteins associated with both translation and mRNA splicing. This methodology also enabled the identification of some of the specific cysteine residue targets within identified proteins that are reversibly oxidized by hydrogen peroxide treatment of intact cells. From these identifications, we determined a potential consensus sequence motif associated with oxidized cysteine residues. Furthermore, because we identified proteins and specific sites of oxidation from both abundant proteins and from far less abundant signaling proteins (e.g. hepatoma derived growth factor, prostaglandin E synthase 3), the results suggest that the PROP procedure was efficient. Thus, this PROP-proteomics methodology offers a sensitive means to identify biologically relevant redox signaling events that occur within intact cells
Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies
- …
