1,442 research outputs found

    Orphaned Protostars

    Full text link
    We explore the origin of a population of distant companions (~1000 - 5000 AU) to Class I protostellar sources recently found by Connelley and co-workers, who noted that the companion fraction diminished as the sources evolved. Here we present N-body simulations of unstable triple systems embedded in dense cloud cores. Many companions are ejected into unbound orbits and quickly escape, but others are ejected with insufficient momentum to climb out of the potential well of the cloud core and associated binary. These loosely bound companions reach distances of many thousands of AU before falling back and eventually being ejected into escapes as the cloud cores gradually disappear. We use the term orphans to denote protostellar objects that are dynamically ejected from their placental cloud cores, either escaping or for a time being tenuously bound at large separations. Half of all triple systems are found to disintegrate during the protostellar stage, so if multiple systems are a frequent outcome of the collapse of a cloud core, then orphans should be common. Bound orphans are associated with embedded close protostellar binaries, but escaping orphans can travel as far as ~0.2 pc during the protostellar phase. The steep climb out of a potential well ensures that orphans are not kinematically distinct from young stars born with a less violent pre-history. The identification of orphans outside their heavily extincted cloud cores will allow the detailed study of protostars high up on their Hayashi tracks at near-infrared and in some cases even at optical wavelengths.Comment: 16 pages, 5 figure

    Wide-field Infrared Survey Explorer Observations of Young Stellar Objects in the Western Circinus Molecular Cloud

    Get PDF
    The Wide-field Infrared Survey Explorer has uncovered a population of young stellar objects in the Western Circinus molecular cloud. Images show the YSOs to be clustered into two main groups that are coincident with dark filamentary structure in the nebulosity. Analysis of photometry shows numerous Class I and II objects. The locations of several of these objects are found to correspond to known dense cores and CO outflows. Class I objects tend to be concentrated in dense aggregates, and Class II objects more evenly distributed throughout the region.Comment: 25 pages, including 4 figures, 1 table; accepted for publication in The Astrophysical Journal Letter

    High Resolution Near-Infrared Spectroscopy of FUors and FUor-like stars

    Full text link
    We present new high resolution (R=18,000) near-infrared spectroscopic observations of a sample of classical FU Orionis stars (FUors) and other young stars with FUor characteristics that are sources of Herbig-Haro flows. Spectra are presented for the region 2.203 - 2.236 microns which is rich in absorption lines sensitive to both effective temperatures and surface gravities of stars. Both FUors and FUor-like stars show numerous broad and weak unidentified spectral features in this region. Spectra of the 2.280 - 2.300 micron region are also presented, with the 2.2935 micron v=2-0 CO absorption bandhead being clearly the strongest feature seen in the spectra all FUors and Fuor-like stars. A cross-correlation analysis shows that FUor and FUor-like spectra in the 2.203 - 2.236 micron region are not consistent with late-type dwarfs, giants, nor embedded protostars. The cross-correlations also show that the observed FUor-like Herbig-Haro energy sources have spectra that are substantively similar to those of FUors. Both object groups also have similar near-infrared colors. The large line widths and double-peaked nature of the spectra of the FUor-like stars are consistent with the established accretion disk model for FUors, also consistent with their near-infrared colors. It appears that young stars with FUor-like characteristics may be more common than projected from the relatively few known classical FUors.Comment: 21 pages, 4 figures, accepted by The Astronomical Journa

    Herbig-Haro flows in B335

    Full text link
    We have observed optical (Halpha and [SII]) and near-IR (S(1) line of H2) deep fields and taken optical spectra using the 2.56m NOT, as well as a near-UV deep field (U band) using the 3.58m NTT. In addition we present new SPITZER (IRAC and MIPS) mid-IR observations. We use previous Halpha and S(1) observations taken 15 and 9 years earlier to make proper motion maps. We then investigate the shock physics by matching our spectra with planar shock models. We discover six new HH objects in B335. From proper motions we find an optically bright, roughly E-W oriented group with high space velocities (200-280 km/s) and a near-IR bright, slower group (15-75 km/s) moving to the ESE. We also find a system of at least 15 H2 knots in the western lobe. This (WNW) counterflow suggests the possibility of a binary outflow source, giving rise to two outflow axes with slightly different orientations. We find that the E-W flow is symmetrical with evidence for two outbursts. We make the first detection of [OI] 6300/63 in HH119 B and Hbeta in HH119 A and B and find their extinctions to be AV~1.4 and 4.4, respectively. HH119 A is found to expand much faster than expected from linear expansion with distance from the outflow source. Using planar shock models we find shock velocities of ~60 km/s (A) and ~35 km/s (B and C). This agrees with A being of higher excitation than B and C. In our U image we detect three of the HH objects and propose that the emission arise from the [OII] 3728 line and the blue continuum. New SPITZER observations show most of the HH objects at 4.5 micron and a E-W elongated hour-glass shaped structure at the outflow source. Even at 24 micron it is not clear whether most of the light is direct or reflected.Comment: 23 pages, 15 figures, accepted in A&

    V1647 ORIONIS: Keck/Nirspec 2 MICRON Echelle Observations

    Full text link
    We present new Keck II NIRSPEC high-spectral resolution 2 um echelle observations of the young eruptive variable star V1647 Orionis. This star went into outburst in late 2003 and faded to its pre-outburst brightness after approximately 26 months. V1647 Orionis is the illuminating star of McNeil's Nebula and is located near M 78 in the Lynds 1630 dark cloud. Our spectra have a resolving power of approximately 18,000 and allow us to study in detail the weak absorption features present on the strong near-IR veiled continuum. An analysis of the echelle orders containing Mg I (2.1066 um) and Al I (2.1099 um), Br-gamma (2.1661 um), the Na I doublet (2.206 and 2.209 um), and the CO overtone bandhead (2.2935 um) gives us considerable information on the physical and geometric characteristics of the regions producing these spectral features. We find that, at high-spectral resolution, V1647 Orionis in quiescence resembles a significant number of FU Orionis type eruptive variables and does not appear similar to the quiescent EX Lupi variables observed. This correspondence is discussed and implications for the evolutionary state of the star are considered.Comment: 37 pages, 3 Tables, 17 Figure

    The Bok Globule BHR 160: structure and star formation

    Full text link
    BHR 160 is a virtually unstudied cometary globule within the Sco OB4 association in Scorpius at a distance of 1600pc. It is part of a system of cometary clouds which face the luminous O star HD155806. BHR 160 is special because it has an intense bright rim. We attempt to derive physical parameters for BHR 160 and to understand its structure and the origin of its peculiar bright rim. BHR 160 was mapped in the 12^{12}CO, 13^{13}CO and C18^{18}O (2-1) and (1-0) and CS (3-2) and (2-1) lines. These data, augmented with stellar photometry derived from the ESO VVV survey, were used to derive the mass and distribution of molecular material in BHR 160 and its surroundings. Archival mid-infrared data from the WISE satellite was used to find IR excess stars in the globule and its neighbourhood. An elongated 1' by 0.6' core lies adjacent to the globule bright rim. 12^{12}CO emission covers the whole globule, but the 13^{13}CO, C18^{18}O and CS emission is more concentrated to the core. The 12^{12}CO line profiles indicate the presence of outflowing material near the core, but the spatial resolution of the mm data is not sufficient for a detailed spatial analysis. The BHR 160 mass estimated from the C18^{18}O mapping is 100±\pm50Msun(d/1.6kpc)2^2 where d is the distance to the globule. Approximately 70 percent of the mass lies in the dense core. The total mass of molecular gas in the direction of BHR 160 is 210±\pm(d/1.6kpc)2^2 Msun when estimated from the more extended VVV NIR photometry. We argue that the bright rim of BHR 160 is produced by a close-by early B-type star, HD 319648, that was likely recently born in the globule. This star is likely to have triggered the formation of a source, IRS 1, that is embedded within the core of the globule and detected only in Ks and by WISE and IRAS.Comment: 19 pages, 24 figures, Accepted for publication in Astronomy and Astrophysic

    A Universal Stellar Initial Mass Function? A Critical Look at Variations

    Full text link
    Few topics in astronomy initiate such vigorous discussion as whether or not the initial mass function (IMF) of stars is universal, or instead sensitive to the initial conditions of star formation. The distinction is of critical importance: the IMF influences most of the observable properties of stellar populations and galaxies, and detecting variations in the IMF could provide deep insights into the process by which stars form. In this review, we take a critical look at the case for IMF variations, with a view towards whether other explanations are sufficient given the evidence. Studies of the field, local young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a "universal" IMF: a power-law of Salpeter index (Γ=1.35\Gamma=1.35) above a few solar masses, and a log normal or shallower power-law (Γ00.25\Gamma \sim 0-0.25) between a few tenths and a few solar masses (ignoring the effects of unresolved binaries). The shape and universality of the IMF at the stellar-substellar boundary is still under investigation and uncertainties remain large, but most observations are consistent with a IMF that declines (Γ<0.5\Gamma < -0.5) well below the hydrogen burning limit. Observations of resolved stellar populations and the integrated properties of most galaxies are also consistent with a "universal IMF", suggesting no gross variations in the IMF over much of cosmic time. There are indications of "non-standard" IMFs in specific local and extragalactic environments, which clearly warrant further study. Nonetheless, there is no clear evidence that the IMF varies strongly and systematically as a function of initial conditions after the first few generations of stars.Comment: 49 pages, 5 figures, to appear in Annual Reviews of Astronomy and Astrophysics (2010, volume 48