903 research outputs found

    Combined MASS-DIMM instrument for atmospheric turbulence studies

    Full text link
    Several site-testing programs and observatories currently use combined MASS-DIMM instruments for monitoring parameters of optical turbulence. The instrument is described here. After a short recall of the measured quantities and operational principles, the optics and electronics of MASS-DIMM, interfacing to telescopes and detectors, and operation are covered in some detail. Particular attention is given to the correct measurement and control of instrumental parameters to ensure valid and well-calibrated data, to the data quality and filtering. Examples of MASS-DIMM data are given, followed by the list of present and future applications.Comment: Accepted by MNRAS, 11 pages, 8 figure

    Accurate seeing measurements with MASS and DIMM

    Full text link
    Astronomical seeing is quantified by a single parameter, turbulence integral, in the framework of the Kolmogorov turbulence model. This parameter can be routinely measured by a Differential Image Motion Monitor, DIMM. A new instrument, Multi-Aperture Scintillation Sensor (MASS), permits to measure the seeing in the free atmosphere above ~0.5km and, together with a DIMM, to estimate the ground-layer seeing. The absolute accuracy of both methods is studied here using analytical theory, numerical simulation, and experiments. A modification of the MASS data processing to compensate for partially saturated scintillation is developed. We find that the DIMM can be severely biased by optical aberrations (e.g. defocus) and propagation. Seeing measurements with DIMM and MASS can reach absolute accuracy of ~10% when their biases are carefully controlled. Pushing this limit to 1% appears unrealistic because the seeing itself is just a model-dependent parameter of a non-stationary random process.Comment: 13 pages, 14 figures. Accepted for publication in MNRA
    • …
    corecore