716 research outputs found

    Optical-CDMA in InP

    Get PDF
    This paper describes the InP platforms for photonic integration and the development on these platforms of an optical code division multiple access (O-CDMA) system for local area networks. We demonstrate three building blocks of this system: an optical pulse source, an encoder/decoder pair, and a threshold detector. The optical pulse source consists of an integrated colliding pulse-mode laser with nearly transform-limited 10 Gb/s pulses and optical injection locking to an external clock for synchronization. The encoder/decoder pair is based on arrayed waveguide gratings. Bit-error-rate measurements involving six users at 10 Gb/s showed error-free transmission, while O-CDMA codes were calibrated using frequency resolved optical gating. For threshold detection after the decoder, we compared two Mach--Zehnder interferometer (MZI)-based optical thresholding schemes and present results on a new type of electroabsorber-based MZI

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Strain alleviation in an isomorphous series of lanthanide 2-nitroterephthalates [Ln2(TPNO2)3(H2O)2]·2H2O (Ln = Pr – Lu, except Pm)

    Get PDF
    An extended series of trivalent lanthanide 2-nitroterephthalates, [Ln2(TPNO2)3(H2O)2]•2H2O, (Ln = Pr through Lu, except Pm) were synthesized hydrothermally from Ln2O3 and 2-nitroterephthalic acid (H2TPNO2) at 170˚C in Teflon lined Parr steel autoclaves, and were characterized via single crystal X-ray diffraction, powder X-ray diffraction, FT-IR spectroscopy, elemental analyses, and thermogravimetric analyses. All [Ln2(TPNO2)3(H2O)2]•2H2O coordination polymers are isomorphous, crystallizing in the monoclinic crystal system with space group C2/c. The metal centers in all networks possess the coordination number 8, while forming a three-dimensional extended lattice. Two metal centers form Ln2O14 entities, comprising crystallographically identical LnO8 polyhedra, connected via edge-sharing, utilizing two carboxylate O-atoms. These Ln2O14 units are separated along the a and b-axes by individual 2-nitroterephthalate linkers, while being closely connected along the c axis via two carboxylate groups on each side. Compared to small inorganic anions, the rather flexible 2-nitroterephthalate seems to allow for the unobstructed decrease in size of the LnO8 polyhedra as Ln3+ ionic radii decrease towards the heavier Ln elements. Hence, the structural parameters of the crystal lattice adjust gradually without noticeable strain buildup along the series resulting in isomorphous arrangements for all networks. The thermogravimetric and FT-IR measurements seem to confirm the structural features

    Optimization of a Low Cost and Broadly Sensitive Genotyping Assay for HIV-1 Drug Resistance Surveillance and Monitoring in Resource-Limited Settings

    Get PDF
    Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX

    Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV

    Get PDF
    The nuclear modification factors of J/psi and psi(2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of root S-NN = 5.02 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 mu b(-1) and 28 pb(-1), respectively. The measurements are performed in the dimuon rapidity range of vertical bar y vertical bar 25 GeV/c is seen with respect to that observed at intermediate p(T). The prompt psi(2S) meson yield is found to be more suppressed than that of the prompt J/psi mesons in the entire p(T) range.Peer reviewe

    Excellent adherence and no contamination by physiotherapists involved in a randomized controlled trial on reactivation of COPD patients: a qualitative process evaluation study

    Get PDF
    Contains fulltext : 107813.pdf (publisher's version ) (Open Access)OBJECTIVE: To assess the adherence of physiotherapists to the study protocol and the occurrence of contamination bias during the course of a randomized controlled trial with a recruitment period of 2 years and a 1-year follow-up (COPE-II study). STUDY DESIGN AND SETTING: In the COPE-II study, intervention patients received a standardized physiotherapeutic reactivation intervention (COPE-active) and control patients received usual care. The latter could include regular physiotherapy treatment. Information about the adherence of physiotherapists with the study protocol was collected by performing a single interview with both intervention and control patients. Patients were only interviewed when they were currently receiving physiotherapy. Interviews were performed during two separate time periods, 10 months apart. Nine characteristics of the COPE-active intervention were scored. Scores were converted into percentages (0%, no aspects of COPE-active; 100%, full implementation of COPE-active). RESULTS: Fifty-one patients were interviewed (first period: intervention n = 14 and control n = 10; second period: intervention n = 18 and control n = 9). Adherence with the COPE-active protocol was high (median scores: period 1, 96.8%; period 2, 92.1%), and large contrasts in scores between the intervention and control group were found (period 1: 96.8% versus 22.7%; period 2: 92.1% versus 25.0%). The scores of patients treated by seven physiotherapists who trained patients of both study groups were similar to the scores of patients treated by physiotherapists who only trained patients of one study group. CONCLUSION: The adherence of physiotherapists with the COPE-active protocol was high, remained unchanged over time, and no obvious contamination bias occurred

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
    corecore