10 research outputs found
Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex
Nogo-A has been well described as a myelin-associated inhibitor of neurite outgrowth and functional neuroregeneration after central nervous system (CNS) injury. Recently, a new role of Nogo-A has been identified as a negative regulator of synaptic plasticity in the uninjured adult CNS. Nogo-A is present in neurons and oligodendrocytes. However, it is yet unclear which of these two pools regulate synaptic plasticity. To address this question we used newly generated mouse lines in which Nogo-A is specifically knocked out in (1) oligodendrocytes (oligoNogo-A KO) or (2) neurons (neuroNogo-A KO). We show that both oligodendrocyte- and neuron-specific Nogo-A KO mice have enhanced dendritic branching and spine densities in layer 2/3 cortical pyramidal neurons. These effects are compartmentalized: neuronal Nogo-A affects proximal dendrites whereas oligodendrocytic Nogo-A affects distal regions. Finally, we used two-photon laser scanning microscopy to measure the spine turnover rate of adult mouse motor cortex layer 5 cells and find that both Nogo-A KO mouse lines show enhanced spine remodeling after 4 days. Our results suggest relevant control functions of glial as well as neuronal Nogo-A for synaptic plasticity and open new possibilities for more selective and targeted plasticity enhancing strategies
YAP, ΔNp63, and β-Catenin Signaling Pathways Are Involved in the Modulation of Corneal Epithelial Stem Cell Phenotype Induced by Substrate Stiffness
Recent studies have established that the phenotype of epithelial stem cells residing in the corneal periphery (the limbus) depends on this niche’s distinct biomechanical properties. However, the signaling pathways underlying this dependency are still poorly understood. To address this issue, we investigated the effect of substrate stiffness on the migration, proliferation, and molecular phenotype of human limbal epithelial stem cells (LESCs). Specifically, we demonstrated that cells grown on collagen-based substrates with limbus-like compliance showed higher proliferation and stratification and lower migration capabilities, as well as higher levels of pro-proliferative markers Ki67 and β-Catenin, and LESC markers ΔNp63, ABCG2, and CK15. In contrast, cells on stiffer substrates lost these stem/progenitor cell markers, but instead expressed the key mechanotransduction factor YAP, as well as elevated levels of BMP4, a promotor of cell differentiation known to be negatively regulated by Wnt/β-Catenin signaling. This data allowed us to propose a new model that integrates the various molecular pathways involved in LESC response to substrate stiffness. This model will potentially be a useful guide to future research on the mechanisms underlying LESC loss following fibrosis-causing injuries
Reproducibility analysis of bioimpedance-based self-developed live cell assays
Abstract Bioimpedance spectrum (BIS) measurements have a great future in in vitro experiments, meeting all the requirements for non-destructive and label-free methods. Nevertheless, a real basic research can provide the necessary milestones to achieve the success of the method. In this paper a self-developed technology-based approach for in vitro assays is proposed. Authors invented a special graphene-based measuring plate in order to assess the high sensitivity and reproducibility of introduced technique. The design of the self-produced BIS plates maximizes the detection capacity of qualitative changes in cell culture and it is robust against physical effects and artifacts. The plates do not influence the viability and proliferation, however the results are robust, stable and reproducible regardless of when and where the experiments are carried out. In this study, physiological saline concentrations, two cancer and stem cell lines were utilized. All the results were statistically tested and confirmed. The findings of the assays show, that the introduced BIS technology is appropriate to be used in vitro experiments with high efficacy. The experimental results demonstrate high correlation values across the replicates, and the model parameters suggested that the characteristic differences among the various cell lines can be detected using appropriate hypothesis tests