264 research outputs found
Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals
We show that random telegraph signals in metal-oxide-silicon transistors at
millikelvin temperatures provide a powerful means of investigating tunneling
between a two-dimensional electron gas and a single defect state. The tunneling
rate shows a peak when the defect level lines up with the Fermi energy, in
excellent agreement with theory of the Fermi-edge singularity at finite
temperature. This theory also indicates that defect levels are the origin of
the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi
A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer
We introduce a Markov model for the evolution of a gene family along a
phylogeny. The model includes parameters for the rates of horizontal gene
transfer, gene duplication, and gene loss, in addition to branch lengths in the
phylogeny. The likelihood for the changes in the size of a gene family across
different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space,
where N is the number of organisms, is the height of the phylogeny, and M
is the sum of family sizes. We apply the model to the evolution of gene content
in Preoteobacteria using the gene families in the COG (Clusters of Orthologous
Groups) database
The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant
We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at
Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young
oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the
resultant data cube, we have been able to reconstruct the full 3D structure of
the system of [O III] filaments. The majority of the ejecta form a ring of
~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We
conclude that SNR N132D is approaching the end of the reverse shock phase
before entering the fully thermalized Sedov phase of evolution. We speculate
that the ring of oxygen-rich material comes from ejecta in the equatorial plane
of a bipolar explosion, and that the overall shape of the SNR is strongly
influenced by the pre-supernova mass loss from the progenitor star. We find
tantalizing evidence of a polar jet associated with a very fast oxygen-rich
knot, and clear evidence that the central star has interacted with one or more
dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8
figure
Evolutionary aspects of population structure for molecular and quantitative traits in the freshwater snail Radix balthica.
Detecting the action of selection in natural populations can be achieved using the QST-FST comparison that relies on the estimation of FST with neutral markers, and QST using quantitative traits potentially under selection. QST higher than FST suggests the action of directional selection and thus potential local adaptation. In this article, we apply the QST-FST comparison to four populations of the hermaphroditic freshwater snail Radix balthica located in a floodplain habitat. In contrast to most studies published so far, we did not detect evidence of directional selection for local optima for any of the traits we measured: QST calculated using three different methods was never higher than FST. A strong inbreeding depression was also detected, indicating that outcrossing is probably predominant over selfing in the studied populations. Our results suggest that in this floodplain habitat, local adaptation of R. balthica populations may be hindered by genetic drift, and possibly altered by uneven gene flow linked to flood frequency
Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar
A number of analyses, meta-Analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015) Proc Natl Acad Sci USA 112(49):15060-15065] argue that it is feasible to provide low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055 , with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Dificultades para codificar, relacionar y categorizar problemas verbales algebraicos: dos estudios con estudiantes de secundaria y profesores en formación
En resolución de problemas verbales por transferencia, la activación de problemas ya conocidos que sirvan de guía, depende de las analogías percibidas entre éstos y el problema a resolver. Se desarrollan dos estudios relacionados para analizar en qué características se basan los estudiantes para codificar problemas y detectar sus analogías, en tareas de categorización (sorting). Se utilizaron técnicas cuantitativas y cualitativas combinadas. Primero se analizó cómo los estudiantes de secundaria son influidos por diferentes variables características de problemas de ciencias. Una gran proporción de sujetos no fue capaz de percibir las analogías y diferencias adecuadas entre problemas. El segundo estudio trató de avanzar una explicación de estos resultados. El nivel académico y la familiaridad con las temáticas fueron factores significativos, pero los futuros profesores participantes mostraron demasiadas dificultades, alertando sobre la conveniencia de revisar algunos supuestos instruccionales habituales
Animal models for COVID-19
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19
- …