123 research outputs found

    How to identify essential genes from molecular networks?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of essential genes from molecular networks is a way to test the understanding of essentiality in the context of what is known about the network. However, the current knowledge on molecular network structures is incomplete yet, and consequently the strategies aimed to predict essential genes are prone to uncertain predictions. We propose that simultaneously evaluating different network structures and different algorithms representing gene essentiality (centrality measures) may identify essential genes in networks in a reliable fashion.</p> <p>Results</p> <p>By simultaneously analyzing 16 different centrality measures on 18 different reconstructed metabolic networks for <it>Saccharomyces cerevisiae</it>, we show that no single centrality measure identifies essential genes from these networks in a statistically significant way; however, the combination of at least 2 centrality measures achieves a reliable prediction of most but not all of the essential genes. No improvement is achieved in the prediction of essential genes when 3 or 4 centrality measures were combined.</p> <p>Conclusion</p> <p>The method reported here describes a reliable procedure to predict essential genes from molecular networks. Our results show that essential genes may be predicted only by combining centrality measures, revealing the complex nature of the function of essential genes.</p

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in CassiopeiaA

    Get PDF
    Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium1, directly probes the explosion asymmetries. Cassiopeia A is a young2, nearby3, core-collapse4 remnant from which 44Ti emission has previously been detected5, 6, 7, 8 but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission9, from optical light echoes10, and from jet-like features seen in the X-ray11 and optical12 ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae

    Nucleoside Analogue Reverse Transcriptase Inhibitors Differentially Inhibit Human LINE-1 Retrotransposition

    Get PDF
    Intact LINE-1 elements are the only retrotransposons encoded by the human genome known to be capable of autonomous replication. Numerous cases of genetic disease have been traced to gene disruptions caused by LINE-1 retrotransposition events in germ-line cells. In addition, genomic instability resulting from LINE-1 retrotransposition in somatic cells has been proposed as a contributing factor to oncogenesis and to cancer progression. LINE-1 element activity may also play a role in normal physiology. LINE-1 retrotransposition reporter assay, we evaluated the abilities of several antiretroviral compounds to inhibit LINE-1 retrotransposition. The nucleoside analogue reverse transcriptase inhibitors (nRTIs): stavudine, zidovudine, tenofovir disoproxil fumarate, and lamivudine all inhibited LINE-1 retrotransposition with varying degrees of potencies, while the non-nucleoside HIV-1 reverse transcriptase inhibitor nevirapine showed no effect.Our data demonstrates the ability for nRTIs to suppress LINE-1 retrotransposition. This is immediately applicable to studies aimed at examining potential roles for LINE-1 retrotransposition in physiological processes. In addition, our data raises novel safety considerations for nRTIs based on their potential to disrupt physiological processes involving LINE-1 retrotransposition

    Angular and Current-target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic e+ p scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation
    corecore