42 research outputs found

    The effectiveness, acceptability and cost-effectiveness of psychosocial interventions for maltreated children and adolescents: an evidence synthesis.

    Get PDF
    BACKGROUND: Child maltreatment is a substantial social problem that affects large numbers of children and young people in the UK, resulting in a range of significant short- and long-term psychosocial problems. OBJECTIVES: To synthesise evidence of the effectiveness, cost-effectiveness and acceptability of interventions addressing the adverse consequences of child maltreatment. STUDY DESIGN: For effectiveness, we included any controlled study. Other study designs were considered for economic decision modelling. For acceptability, we included any study that asked participants for their views. PARTICIPANTS: Children and young people up to 24 years 11 months, who had experienced maltreatment before the age of 17 years 11 months. INTERVENTIONS: Any psychosocial intervention provided in any setting aiming to address the consequences of maltreatment. MAIN OUTCOME MEASURES: Psychological distress [particularly post-traumatic stress disorder (PTSD), depression and anxiety, and self-harm], behaviour, social functioning, quality of life and acceptability. METHODS: Young Persons and Professional Advisory Groups guided the project, which was conducted in accordance with Cochrane Collaboration and NHS Centre for Reviews and Dissemination guidance. Departures from the published protocol were recorded and explained. Meta-analyses and cost-effectiveness analyses of available data were undertaken where possible. RESULTS: We identified 198 effectiveness studies (including 62 randomised trials); six economic evaluations (five using trial data and one decision-analytic model); and 73 studies investigating treatment acceptability. Pooled data on cognitive-behavioural therapy (CBT) for sexual abuse suggested post-treatment reductions in PTSD [standardised mean difference (SMD) -0.44 (95% CI -4.43 to -1.53)], depression [mean difference -2.83 (95% CI -4.53 to -1.13)] and anxiety [SMD -0.23 (95% CI -0.03 to -0.42)]. No differences were observed for post-treatment sexualised behaviour, externalising behaviour, behaviour management skills of parents, or parental support to the child. Findings from attachment-focused interventions suggested improvements in secure attachment [odds ratio 0.14 (95% CI 0.03 to 0.70)] and reductions in disorganised behaviour [SMD 0.23 (95% CI 0.13 to 0.42)], but no differences in avoidant attachment or externalising behaviour. Few studies addressed the role of caregivers, or the impact of the therapist-child relationship. Economic evaluations suffered methodological limitations and provided conflicting results. As a result, decision-analytic modelling was not possible, but cost-effectiveness analysis using effectiveness data from meta-analyses was undertaken for the most promising intervention: CBT for sexual abuse. Analyses of the cost-effectiveness of CBT were limited by the lack of cost data beyond the cost of CBT itself. CONCLUSIONS: It is not possible to draw firm conclusions about which interventions are effective for children with different maltreatment profiles, which are of no benefit or are harmful, and which factors encourage people to seek therapy, accept the offer of therapy and actively engage with therapy. Little is known about the cost-effectiveness of alternative interventions. LIMITATIONS: Studies were largely conducted outside the UK. The heterogeneity of outcomes and measures seriously impacted on the ability to conduct meta-analyses. FUTURE WORK: Studies are needed that assess the effectiveness of interventions within a UK context, which address the wider effects of maltreatment, as well as specific clinical outcomes. STUDY REGISTRATION: This study is registered as PROSPERO CRD42013003889. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    Effects of Light, Food Availability and Temperature Stress on the Function of Photosystem II and Photosystem I of Coral Symbionts

    Get PDF
    Background: Reef corals are heterotrophic coelenterates that achieve high productivity through their photosynthetic dinoflagellate symbionts. Excessive seawater temperature destabilises this symbiosis and causes corals to "bleach," lowering their photosynthetic capacity. Bleaching poses a serious threat to the persistence of coral reefs on a global scale. Despite expanding research on the causes of bleaching, the mechanisms remain a subject of debate.\ud \ud Methodology/Principal Findings: This study determined how light and food availability modulate the effects of temperature stress on photosynthesis in two reef coral species. We quantified the activities of Photosystem II, Photosystem I and whole chain electron transport under combinations of normal and stressful growth temperatures, moderate and high light levels and the presence or absence of feeding of the coral hosts. Our results show that PS1 function is comparatively robust against temperature stress in both species, whereas PS2 and whole chain electron transport are susceptible to temperature stress. In the symbiotic dinoflagellates of Stylophora pistillata the contents of chlorophyll and major photosynthetic complexes were primarily affected by food availability. In Turbinaria reniformis growth temperature was the dominant influence on the contents of the photosynthetic complexes. In both species feeding the host significantly protected photosynthetic function from high temperature stress.\ud \ud Conclusions/Significance: Our findings support the photoinhibition model of coral bleaching and demonstrate that PS1 is not a major site for thermal damage during bleaching events. Feeding mitigates bleaching in two scleractinian corals, so that reef responses to temperature stresses will likely be influenced by the coinciding availabilities of prey for the host

    Creating and curating an archive: Bury St Edmunds and its Anglo-Saxon past

    Get PDF
    This contribution explores the mechanisms by which the Benedictine foundation of Bury St Edmunds sought to legitimise and preserve their spurious pre-Conquest privileges and holdings throughout the Middle Ages. The archive is extraordinary in terms of the large number of surviving registers and cartularies which contain copies of Anglo-Saxon charters, many of which are wholly or partly in Old English. The essay charts the changing use to which these ancient documents were put in response to threats to the foundation's continued enjoyment of its liberties. The focus throughout the essay is to demonstrate how pragmatic considerations at every stage affects the development of the archive and the ways in which these linguistically challenging texts were presented, re-presented, and represented during the Abbey’s history

    Limnological properties of thermokarst lakes in Central Yakutia sampled between 2018-2019

    No full text
    This dataset compiles selected limnological properties of a series of thermokarst (thaw) lakes in Central Yakutia (Eastern Siberia). These properties were measured during fall 2018 (September), winter 2019 (March-April), spring 2019 (May), and summer 2019 (August). These data span four seasons (Fall, Winter, Spring, and Summer) 2018-2019. The lake type designation is based on field observations, past radiocarbon dating of lake sediments, geochemical signatures of lake waters, and a multiple-stage development model of thermokarst lakes. Data were collected at the surface (~ 30 cm depth) from lake shores. Specific conductivity (accuracy ±1% of reading), temperature (accuracy ±0.2°C), dissolved oxygen (accuracy ±1% of reading or 1% saturation) and pH (accuracy ±0.2) were measured using a YSI Pro DSS multiprobe sensor. Water samples were collected to analyze dissolved organic carbon (DOC). Samples were filtered using baked glass fiber filters (Whatman GF/F, 0. 7”m), acidified to pH 2 with ultra-pure HCl and stored in baked glass vials. DOC concentration was measured using a TOC-5000A analyzer (Shimadzu, Japan). The quantification limit was 1 mg L-1. Above this value, the analytical uncertainty was estimated at ±0.1 mg L-1. Reference material included ION-915 ([DOC]= 1.37 ± 0.41mg C L-1) and ION 96.4 ([DOC]= 4.64 ± 0.70 mg C L-1) (Environment and Climate Change Canada, Canada)

    Automated Identification of Thermokarst Lakes Using Machine Learning in the Ice-Rich Permafrost Landscape of Central Yakutia (Eastern Siberia)

    No full text
    International audienceThe current rate and magnitude of temperature rise in the Arctic are disproportionately high compared to global averages. Along with other natural and anthropogenic disturbances, this warming has caused widespread permafrost degradation and soil subsidence, resulting in the formation of thermokarst (thaw) lakes in areas of ice-rich permafrost. These lakes are hotspots of greenhouse gas emissions (CO2 and CH4), but with substantial spatial and temporal heterogeneity across Arctic and sub-Arctic regions. In Central Yakutia (Eastern Siberia, Russia), nearly half of the landscape has been affected by thermokarst processes since the early Holocene, resulting in the formation of more than 10,000 partly drained lake depressions (alas lakes). It is not yet clear how recent changes in temperature and precipitation will affect existing lakes and the formation of new thermokarst lakes. A multi-decadal remote sensing analysis of lake formation and development was conducted for two large study areas (~1200 km2 each) in Central Yakutia. Mask Region-Based Convolutional Neural Networks (R-CNN) instance segmentation was used to semi-automate lake detection in Satellite pour l’Observation de la Terre (SPOT) and declassified US military (CORONA) images (1967–2019). Using these techniques, we quantified changes in lake surface area for three different lake types (unconnected alas lake, connected alas lake, and recent thermokarst lake) since the 1960s. Our results indicate that unconnected alas lakes are the dominant lake type, both in the number of lakes and total surface area coverage. Unconnected alas lakes appear to be more susceptible to changes in precipitation compared to the other two lake types. The majority of recent thermokarst lakes form within 1 km of observable human disturbance and their surface area is directly related to air temperature increases. These results suggest that climate change and human disturbances are having a strong impact on the landscape and hydrology of Central Yakutia. This will likely affect regional and global carbon cycles, with implications for positive feedback scenarios in a continued climate warming situation

    14,000-year carbon accumulation dynamics in a Siberian lake reveal catchment and lake productivity changes

    Get PDF
    International audienceA multi-proxy paleolimnological analysis of a sediment core sequence from Lake MalayaChabyda in Central Yakutia (Eastern Siberia, Russia) was conducted to investigatechanges in lake processes, including lake development, sediment and organic carbonaccumulation, and changes in primary productivity, within the context of Late Pleistoceneand Holocene climate change. Age-depth modeling with 14C indicates that the maximumage of the sediment core is ∌14 cal kBP. Three distinct sedimentary units were identifiedwithin the sediment core. Sedimentological and biogeochemical properties in the deepestsection of the core (663–584 cm; 14.1–12.3 cal kBP) suggests a lake environment mostlyinfluenced by terrestrial vegetation, where organic carbon accumulation might have beenrelatively low (average ∌100 g OC m−2 a−1), although much higher than the global modernaverage. The middle section of the core (584–376 cm; 12.3–9.0 cal kBP) is characterizedby higher primary productivity in the lake, much higher sedimentation, and a remarkableincrease in OC delivery (average ∌300 g OC m−2 a−1). Conditions in the upper section ofthe core (30%) measured in the upper section of the core.Compact lake morphology and high sedimentation rates likely resulted in this lake acting asa significant OC sink since the Pleistocene-Holocene transition. Sediment accumulationrates declined after ∌8 cal k BP, however total OC concentrations were still notably high.TOC/TNatomic and isotopic data (ÎŽ13C) confirm the transition from terrestrial-influenced toaquatic-dominated conditions during the Early Holocene. Since the mid-Holocene, therewas likely higher photosynthetic uptake of CO2 by algae, as suggested by heavier(isotopically enriched) ÎŽ13C values (>−25‰)

    Corrigendum: 14,000-Year Carbon Accumulation Dynamics in a Siberian Lake Reveal Catchment and Lake Productivity

    No full text
    This article is a correction to: 14,000-year Carbon Accumulation Dynamics in a Siberian Lake Reveal Catchment and Lake Productivity Changes doi 10.3389/feart.2021.710257International audienc

    XRF, grain size, and biogeochemical characteristics of a sediment core from Lake Malaya Chabyda, Central Yakutia

    No full text
    Eight overlapping sediment cores, representing an approximately 6.6 m–long composite sequence, were collected on March 24, 2013 from Lake Malaya Chabyda in Central Yakutia (exact coring location 61°57.509' 129°24.500'). Sampling was conducted during a German–Russian Expedition (“Yakutia 2013”) as a cooperation between the North Eastern Federal State University in Yakutsk (NEFU) and the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI). To penetrate ca. 1 m of lake ice cover, 250-mm-diameter holes were drilled using a hand-held Jiffy ice auger. Water depth was measured using an Echo sounder (HONDEX PS-7 LCD) and a calibrated rope for verification. 100 cm-long parallel cores were collected at 2 m water depth using a Russian peat corer and supported by an UWITEC gravity coring system. Cores were stored in waterproof sealed, transparent PVC plastic tubes in cool and dark conditions. After the field season, the cores were transported to Potsdam, Germany and stored at 4°C in the cold rooms at AWI. The cores did not experience any visible drying or surface oxidation during storage. High–resolution X–ray fluorescence (XRF) analyses were carried out with 10 mm resolution on the entire sequence using an Avaatech XRF core scanner at AWI (Bremerhaven, Germany) with a Rh X-ray tube at 10 kV (without filter, 12 s, 1.5 mA) and 30 kV (Pd-thick filer, 15 s, 1.2 mA). The sediment surface was cleaned, leveled, and covered with a 4”m ultralene foil to avoid sediment desiccation prior to XRF scanning. Individual element counts per second (CPS) were transformed using a centered log transformation (CLR) and element ratios were transformed using an additive log ratio (ALR) to account for compositional data effects and reduce effects from variations in sample density, water content, and grain size. Statistical analysis was completed using the Python programming language (Python Software Foundation, https://www.python.org/). XRF analysis of the sequence indicated 24 detectable elements and a subset of these were selected for analysis based on low element χ2 values. These selected elements include the major rock forming elements of Silicon (Si) (Chi2 1.4), Calcium (Ca) (Chi2 6.3), Titanium (Ti) (Chi2 1.3), Rubidium (Rb) (Chi2 0.6), Strontium (Sr) (Chi2 0.7), Zircon (Zr) (Chi2 0.6) and the redox sensitive, productivity indicating elements of Manganese (Mn) (Chi2 1.3), Iron (Fe) (Chi2 2.5), and Bromine (Br) (Chi2 0.8). All subsequent analyses took place after the extracted subsamples had been freeze–dried until completely dry (approximately 48 hours). Grain size analysis was conducted on 18 samples that were chosen to span the entire sequence at relatively regular intervals. The samples were first treated for five weeks with H2O2 (0.88 M) in order to isolate clastic material. After treatment, seven samples were eliminated from the analysis because the remaining inorganic sediment fraction was too low for detection by the laser grain size analyzer. The remaining samples were homogenized using an elution shaker for 24 h and then analyzed using a Malvern Mastersizer 3000 laser. Standard statistical parameters (mean, median, mode, sorting, skewness, and kurtosis) were determined using GRADISTAT 9.1. Total carbon (TC), total organic carbon (TOC), and total nitrogen (TN) analyses were completed after the freeze–dried subsamples were ground in a Pulverisette 5 (Fritsch) planetary mill at 3000 rpm for 7 minutes. TC and TN were measured in a carbon–nitrogen–sulphur analyzer (Vario EL III, Elementar). Five mg of sample material were encapsulated in tin (Sn) capsules together with 10 mg of tungsten–(VI)–oxide. The tungsten–(VI)–oxide ensures complete oxidation of the sample during the measurement process. Duplicate capsules were prepared and measured for each subsample. Blanks and calibration standards were placed every 15 samples to ensure analytical accuracy (< ± 0.1 wt%). Between each sample spatula was cleaned with KIMTECK fuzz-free tissues and isopropyl. Analysis of TOC began by removing the inorganic carbon fraction by placing each subsample in a warm hydrochloric acid solution (1.3 molar) for at least three hours and then transferring the sample to a drying oven. The TC measured for each subsample in the previous analysis was used to determine the amount of sample required for the TOC analysis. The appropriate amount of sample was weighted in a ceramic crucible and analyzed using the Vario Max C, Elementar. The TOC/TN ratio was converted to the TOC/TNatomic ratio by multiplying the TOC/TN ratio by 1.167 (atomic weight of carbon and nitrogen). Total inorganic carbon (TIC) analysis was completed using a Vario SoilTOC cube elemental analyzer after combustion at 400ÂșC (TOC) and 900ÂșC (TIC) (Elementar Corp., Germany). Calculation of ÎŽ13C was completed twice for a subset of samples using two different methodologies. The analysis completed at the AWI Potsdam ISOLAB Facility removed carbonate by treating the samples with hydrogen chloride (12 M HCl) for three hours at 97 °C, then adding purified water and decanting and washed three times. Once the chloride content was below 500 parts per million (ppm), the samples were filtered over a glass microfiber (Whatman Grade GF/B, nominal particle retention of 1.0 ”m). The residual sample was dried overnight in a drying cabinet at 50°C. The dry samples were manually ground for homogenization and weighted into tin capsules and analyzed using a ThermoFisher Scientific Delta–V–Advantage gas mass spectrometer equipped with a FLASH elemental analyzer EA 2000 and a CONFLO IV gas mixing system. In this system, the sample is combusted at 1020°C in O2 atmosphere so that the OC is quantitatively transferred to CO2, after which the isotope ratio is determined relative to a laboratory standard of known isotopic composition. Capsules for control and calibration were run in between. The isotope composition is given in permil (‰) relative to Vienna Pee Dee Belemnite (VPDB). The analysis of a small subset of samples which took place at Laboratoire des sciences du climat et de l'environnement Isotopic Laboratory for methodological comparison underwent a slightly different treatment, as follows. The sediment underwent a soft leaching process to remove carbonate using pre-combusted glass beakers, HCl 0.6N at room temperature, ultra-pure water and drying at 50 C. The samples were then crushed in a pre-combusted glass mortar for homogenization prior to carbon content and ÎŽ13 C analysis. The handling and chemical procedures are common precautions employed with low-carbon-content sediments. Analysis was performed online using a continuous flow EA-IRMS coupling, that is, a Fisons Instrument NA 1500 Element Analyzer coupled to a ThermoFinigan Delta+XP Isotope-Ratio Mass Spectrometer. Two in-house standards (oxalic acid, ÎŽ13C =−19.3% and GCL, _13C =−26.7 %) were inserted every five samples. Each in-house standard was regularly checked against international standards. The measurements were at least triplicated for representativeness. The external reproducibility of the analysis was better than 0.1 %, typically 0.06 %. Extreme values were checked twice. Those samples for which the carbonate was leeched at the room temperature, with lower HCl concentration (0.6N), and without a filtration step (samples analyzed at Laboratoire des sciences du climat et de l'environnement Isotopic Laboratory) had ÎŽ13C values 0.1‰ to 1.0‰ (average 0.5‰) higher than the samples treated at the higher temperature (97.7 ÂșC). However, the plotted ÎŽ13C curve is nearly identical for the subset of samples which were subjected to both treatments. There is some heterogeneity in the amount of offset between the two treatment methods. This might be related to an asymmetrical distribution of hot acid-soluble organic compounds throughout the sediment core. A correction of ca. +0.5‰ was applied to the results of the high temperature treatment. These values were then combined with the low temperature results to provide a complete dataset for the whole core. The standard deviation (1σ) is generally better than ÎŽ13C = ±0.15‰
    corecore