9 research outputs found

    Early diverging insect-pathogenic fungi of the order entomophthorales possess diverse and unique subtilisin-like serine proteases

    Get PDF
    Insect-pathogenic fungi use subtilisin-like serine proteases (SLSPs) to degrade chitin-associated proteins in the insect procuticle. Most insect-pathogenic fungi in the order Hypocreales (Ascomycota) are generalist species with a broad host-range, and most species possess a high number of SLSPs. The other major clade of insect-pathogenic fungi is part of the subphylum Entomophthoromycotina (Zoopagomycota, formerly Zygomycota) which consists of high host-specificity insect-pathogenic fungi that naturally only infect a single or very few host species. The extent to which insect-pathogenic fungi in the order Entomophthorales rely on SLSPs is unknown. Here we take advantage of recently available transcriptomic and genomic datasets from four genera within Entomophthoromycotina: the saprobic or opportunistic pathogens Basidiobolus meristosporus, Conidiobolus coronatus, C. thromboides, C. incongruus, and the host-specific insect pathogens Entomophthora muscae and Pandora formicae, specific pathogens of house flies (Muscae domestica) and wood ants (Formica polyctena), respectively. In total 154 SLSP from six fungi in the subphylum Entomophthoromycotina were identified: E. muscae (n = 22), P. formicae (n = 6), B. meristosporus (n = 60), C. thromboides (n = 18), C. coronatus (n = 36), and C. incongruus (n = 12). A unique group of 11 SLSPs was discovered in the genomes of the obligate biotrophic fungi E. muscae, P. formicae and the saprobic human pathogen C. incongruus that loosely resembles bacillopeptidase F-like SLSPs. Phylogenetics and protein domain analysis show this class represents a unique group of SLSPs so far only observed among Bacteria, Oomycetes and early diverging fungi such as Cryptomycota, Microsporidia, and Entomophthoromycotina. This group of SLSPs is missing in the sister fungal lineages of Kickxellomycotina and the fungal phyla Mucoromyocta, Ascomycota and Basidiomycota fungi suggesting interesting gene loss patterns

    Jet Shapes and Jet Algorithms in SCET

    Get PDF
    Jet shapes are weighted sums over the four-momenta of the constituents of a jet and reveal details of its internal structure, potentially allowing discrimination of its partonic origin. In this work we make predictions for quark and gluon jet shape distributions in N-jet final states in e+e- collisions, defined with a cone or recombination algorithm, where we measure some jet shape observable on a subset of these jets. Using the framework of Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape distributions and demonstrate the consistent renormalization-group running of the functions in the factorization theorem for any number of measured and unmeasured jets, any number of quark and gluon jets, and any angular size R of the jets, as long as R is much smaller than the angular separation between jets. We calculate the jet and soft functions for angularity jet shapes \tau_a to one-loop order (O(alpha_s)) and resum a subset of the large logarithms of \tau_a needed for next-to-leading logarithmic (NLL) accuracy for both cone and kT-type jets. We compare our predictions for the resummed \tau_a distribution of a quark or a gluon jet produced in a 3-jet final state in e+e- annihilation to the output of a Monte Carlo event generator and find that the dependence on a and R is very similar.Comment: 62 pages plus 21 pages of Appendices, 13 figures, uses JHEP3.cls. v2: corrections to finite parts of NLO jet functions, minor changes to plots, clarified discussion of power corrections. v3: Journal version. Introductory sections significantly reorganized for clarity, classification of logarithmic accuracy clarified, results for non-Mercedes-Benz configurations adde

    Mechanisms of congenital heart disease caused by NAA15 haploinsufficiency

    Get PDF
    Rationale: NAA15 is a component of the N-terminal (Nt) acetyltransferase complex, NatA. The mechanism by which NAA15 haploinsufficiency causes congenital heart disease (CHD) remains unknown. To better understand molecular processes by which NAA15 haploinsufficiency perturbs cardiac development, we introduced NAA15 variants into human induced pluripotent stem cells (iPSCs) and assessed the consequences of these mutations on RNA and protein expression. Objective: We aim to understand the role of NAA15 haploinsufficiency in cardiac development by investigating proteomic effects on NatA complex activity, and identifying proteins dependent upon a full amount of NAA15. Methods and Results: We introduced heterozygous LoF, compound heterozygous and missense residues (R276W) in iPS cells using CRISPR/Cas9. Haploinsufficient NAA15 iPS cells differentiate into cardiomyocytes, unlike NAA15-null iPS cells, presumably due to altered composition of NatA. Mass spectrometry (MS) analyses reveal ~80% of identified iPS cell NatA targeted proteins displayed partial or complete Nt-acetylation. Between null and haploinsufficient NAA15 cells Nt-acetylation levels of 32 and 9 NatA-specific targeted proteins were reduced, respectively. Similar acetylation loss in few proteins occurred in NAA15 R276W iPSCs. In addition, steady-state protein levels of 562 proteins were altered in both null and haploinsufficient NAA15 cells; eighteen were ribosomal-associated proteins. At least four proteins were encoded by genes known to cause autosomal dominant CHD. Conclusions: These studies define a set of human proteins that requires a full NAA15 complement for normal synthesis and development. A 50% reduction in the amount of NAA15 alters levels of at least 562 proteins and Nt-acetylation of only 9 proteins. One or more modulated proteins are likely responsible for NAA15-haploinsufficiency mediated CHD. Additionally, genetically engineered iPS cells provide a platform for evaluating the consequences of amino acid sequence variants of unknown significance on NAA15 function

    Dementia Revealed: Novel Chromosome 6 Locus for Late-Onset Alzheimer Disease Provides Genetic Evidence for Folate-Pathway Abnormalities

    Get PDF
    Genome-wide association studies (GWAS) of late-onset Alzheimer disease (LOAD) have consistently observed strong evidence of association with polymorphisms in APOE. However, until recently, variants at few other loci with statistically significant associations have replicated across studies. The present study combines data on 483,399 single nucleotide polymorphisms (SNPs) from a previously reported GWAS of 492 LOAD cases and 496 controls and from an independent set of 439 LOAD cases and 608 controls to strengthen power to identify novel genetic association signals. Associations exceeding the experiment-wide significance threshold () were replicated in an additional 1,338 cases and 2,003 controls. As expected, these analyses unequivocally confirmed APOE's risk effect (rs2075650, ). Additionally, the SNP rs11754661 at 151.2 Mb of chromosome 6q25.1 in the gene MTHFD1L (which encodes the methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like protein) was significantly associated with LOAD (; Bonferroni-corrected P = 0.022). Subsequent genotyping of SNPs in high linkage disequilibrium () with rs11754661 identified statistically significant associations in multiple SNPs (rs803424, P = 0.016; rs2073067, P = 0.03; rs2072064, P = 0.035), reducing the likelihood of association due to genotyping error. In the replication case-control set, we observed an association of rs11754661 in the same direction as the previous association at P = 0.002 ( in combined analysis of discovery and replication sets), with associations of similar statistical significance at several adjacent SNPs (rs17349743, P = 0.005; rs803422, P = 0.004). In summary, we observed and replicated a novel statistically significant association in MTHFD1L, a gene involved in the tetrahydrofolate synthesis pathway. This finding is noteworthy, as MTHFD1L may play a role in the generation of methionine from homocysteine and influence homocysteine-related pathways and as levels of homocysteine are a significant risk factor for LOAD development

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies

    Get PDF
    Prospective Studies Collaboration: Gary Whitlock,...K. Jamrozik,..

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease

    No full text
    corecore