33 research outputs found

    Motion Tracking for Smart Home Care

    Get PDF
    Computational Infrastructure and Informatics Poster SessionHuman body motion capture has a wide range of applications and is being extensively investigated. Areas of application include virtual and augmented reality, biomechanics, sign language translation, gait analysis and graphics in movies and video games. The goal of this work is to develop an electronic device to translate arms motion and hand gestures into computer commands for smart home applications. This device is expected to improve the communication and lifestyle of elderly and disable people. We envision a device that is wearable, seamless and easy to use. Current state-of-the-art body motion capture employs high-speed and high-resolution cameras. Although this method is accurate and useful in laboratory settings, it requires the user to be inside the field of view of the cameras, a condition that is not always feasible during everyday activities. Instead, our approach relies on small sensors nodes that are worn on the wrists and around the waist. Inertial sensors such as accelerometers and gyroscopes have been employed before to develop wearable motion-tracking sensors due to their small size. However, they suffer from drift which causes the position estimations to have large errors. Ultrasonic sensors have also been employed to track motion. Although more accurate, ultrasonic sensors are affected by intermittent signal blockage produced by the body. Our approach is to combine these two sensing modalities in a way that the position estimation error is reduced. To that end, the outputs of the inertial and ultrasonic sensors are fused using a Kalman filter. The sensor nodes implement a multilateration algorithm that calculates the position of body-mounted sensors by measuring the time of travel of ultrasound bursts traveling between the sensor nodes. An electronic board for the sensor nodes have been designed, fabricated and programmed. The board measures 3.2 cm x 4.8 cm and includes a low-power microcontroller, a radio unit, a three-axis accelerometer, a two-axis gyroscope, an ultrasonic transmitter and an ultrasonic receiver. Our ongoing activities include the development of a 3D virtual simulation of a smart home. In the virtual smart home, various electronic devices such as computers, cell phones and household appliances like microwaves and televisions are networked for ubiquitous services. The wearable sensors capture the limb movements and relay this data to a central controller where it is interpreted to adjust the home environment. The sensors can also be used for emergency care by detecting any abnormal movements. Our approach will significantly improve current motion capture systems that are too cumbersome to wear or require the subject to be confined to a controlled environment or within the view range of the camera. Besides their use in smart home scenarios, the proposed wearable motion-tracking sensors can be used in biomechanic studies, virtual reality and interactive games

    Multi-disciplinary Collaborations in Measurement of Human Motion

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster SessionBioengineering is a broad and rapidly-growing discipline defined as the application of engineering principles to biological systems. Although bioengineering is diverse in nature, the study of human movement is common to many bioengineering subdisciplines such as biomechanics and biometrics. Biomechanics is the science that examines the forces acting upon and within a biological structure and effects produced by such forces [1]. Measurement of ground reaction forces, limb motion, and muscle activation are fundamental research components in musculoskeletal biomechanics. Researchers in this field have used these measurements to quantify human gait, balance, and posture in a multitude of applications including age-related fall risk [2-4], muscle fatigue [5-7], and balance-related pathologies such as Parkinson's disease [8-10], and stroke [11, 12]. Additionally, these measurements play a vital role in computational biomechanics models. For example, the inverse dynamics method incorporates measured ground reaction forces and body motions to calculate the net reaction forces and torques acting on body joints [13]. Biometrics is the science of confirming or discovering individuals' identities based on their specific biological or behavioral traits [14]. Gait is one such modality which can be used for biometric identification. It is based on the uniqueness of an individual's locomotion patterns [15]. In addition, we are interested in high-speed video analyses of micro-saccades and blink reflexes for spoof-proofing of biometric identification systems, biometric identification, and psychometry. We have shown that startle blink intensity can be derived from high- speed video [18], enabling video-based psychophysiological biometrics for detection of subject-specific affective-cognitive information [19]. The Human Motion Laboratory at the University of Missouri - Kansas City is dedicated to measuring the characteristics of human motion. The lab includes a VICON MX 6-camera motion capture system, 4 AMTI OR6-6 force platforms, and a Delsys Myomonitor IV 16-channel wireless EMG system. This equipment represents an experimental infrastructure mutually supporting the biomechanics and biometrics research efforts of four research labs. The scope of these research efforts includes aging, affective computing, psychophysiological biometrics, orthopedics, and human dynamics pathology. The lab capitalizes on a synergistic environment for characterization and measurement of human movement and the interrelated nature of the research activities. The four main research areas that the Human Motion Laboratory supports are: •Computational Biomechanics •Biometrics of Human Motion •Experimental Biomechanics •Body Area Sensor Network

    Flexible Carbon Nanotube-Based Strain Gage Sensors

    Get PDF
    Jump Starting Technologies, Patent Issues, & Translational Medicine Poster SessionAging brings about dramatic changes in the skeleton and other organ systems. Major skeletal diseases associated with aging include osteoporosis and attendant fractures (hip, spine and wrist or Collies) and osteoarthritis and its resulting need for various joint replacements. The prosthetic joint market in the United Sates is between 45billionannuallyandestimateshavesuggestedthatthisnumberwillincreasebyupwardsof104-5 billion annually and estimates have suggested that this number will increase by upwards of 10% annually as our population continues to age. The average life expectancy of hip and knee replacements is around 10 years, after which replacement of the prosthetic device becomes highly likely. A strain gage sensor that could be incorporated into the prosthetic implant represents a significant advance in terms of assessing the stability of the implant and potentially enables the surgeon to intervene preemptively before failure actually occurs. This poster outlines the fabrication of printable strain gage sensors for use in prosthetic implants and bone biology studies. The authors have completed the preliminary and feasibility studies and are looking for a partner to fund the project. The proposed strain gages are fabricated employing desktop inkjet printers and can be printed on flexible substrates. Special inks based on carbon nanotubes (CNT) and copper nanoparticles are prepared and used in the printing process. The proposed strain gage sensors have several advantages over the conventional metallic alloy gages currently used in biomedical studies. First, CNT-based strain sensors have gage factors of up to 25. In contrast, metallic gages have gage factors of 1.2. The improved gage factors translate into better sensor sensitivity and correspondingly into the detection of smaller strain variations. The commercially available metallic gages have a relatively large size. In contrast, the proposed strain sensors can be made very small due to the fine resolution of inkjet printers and can be custom shaped in different geometries. Furthermore, the sensors can be arranged in arrays enabling the measurement of strain at different points along the bone or the prosthetic implant. Finally, CNT-based strain sensors have better biocompatibility when compared to the metallic gages. Their biocompatibility has been demonstrated in several studies. The estimated cost of chemicals and reagents to prepare enough ink to fill several cartridges is around 780. Equipment and lab facilities are available at UMKC. Carbon nanotubes are commercially available from NanoLab Inc. Copper nanoparticles and other chemicals can be acquired from Sigma-Aldrich. A timeline of one year will be needed to fine tune the fabrication process and characterize the strain gages

    Development of a Telemetry Unit for Wireless Monitoring of Bone Strain

    Get PDF
    Computational Infrastructure and Informatics Poster SessionA telemetry unit designed to monitor strain in bones is presented. This unit allows studying the relationship between bone load and bone mass in scenarios that were not possible with current setup. The current measuring setup employs a bench top load instrument and a data acquisition unit to read the output of strain gage sensors attached to the ulna of a mouse. Although precise, this setup is bulky and requires complete immobilization of the mouse. The telemetry unit developed by the authors replaces the data acquisition unit in the current setup and is able to wirelessly transmit the readings of the strain gage to a remote computer. The telemetry unit makes possible the collection of bone strain data in scenarios where the mouse is free to move or while performing fatigue-inducing exercises. The unit has been designed around an ultra low-power microcontroller (MSP430). The microcontroller makes the design highly flexible and programmable. The telemetry unit also includes a high-performance instrumentation amplifier to amplify the strain gage output. The gain and offset of the amplifier are digitally set by the microcontroller eliminating the use of manual potentiometers. The board has an expansion connector that allows up to 16 additional strain gages to be connected to the unit and incorporates a low-power radio transceiver operating in the 2.4 GHz ISM band. The data transmitted by the unit is received by a base station connected to a computer via a USB cable. The telemetry unit has been tested in a lab setting and is able to transmit the strain data at distances greater than 20 m while consuming less than 30 mW of power. This low power consumption allows the unit to be powered by a micro-battery weighting less than 3 grams. The telemetry unit can be used in other biomedical applications such as in the monitoring of orthopedic implants and can be easily configured to use other type of sensors

    Smart Cardiovascular Stent against In-Stent Restenosis

    Get PDF
    Jump Starting Technologies, Patent Issues, & Translational Medicine Poster SessionA smart cardiovascular stent to be used as a single set of theranostics (therapeutics and diagnostics) is developed. The stent is aimed at delivering nitric oxide as a therapeutic agent and monitoring stent-induced restenosis. This novel approach is intended to reduce the risks stemmed from implanted stents and lowering manufacturing cost. The proposed stent will provide a non-invasive and continuous monitoring of restenosis caused by the stent. To assess the level of restenosis, pressure and blood flow will be monitored inside the blood vessel where the stent is placed. Existing techniques that employ catheters to measure pressure inside blood vessels are not suitable because they are too invasive, cannot monitor pressure for long periods of time and restrict the patient to be in a hospital setting. Our approach consists of two miniature pressure sensors and a small microchip incorporated into the stent. The pressure sensors are placed at the opposite sides of the stent. Blood flow is obtained by assessing the pressure difference at these two points. The microchip reads out the pressure sensors outputs and wirelessly transmits them to a reader outside the body. Due to size constraints and safety reasons a battery cannot be used as a power source for the microchip. Instead, power is provided from the reader via electromagnetic coupling. In order to reduce the number of components to be implanted, we are proposing to employ the stent body not only as a mechanical supporter but also as an antenna. To provide an optimal power match between the microchip and the antenna, the impedance of the stent was fully characterized. This characterization has been performed using computer simulations of five different commercially available stent designs. It was found that at the frequencies of interest (902 to 928 MHz) the impedance is highly reactive. To compensate for the reactive impedance of the antenna, a matching network was designed. A prototype microchip with different components has been designed and is currently being fabricated. Future work includes micro-assembly of a prototype stent for the collection of pressure measurements using an aortic bifurcation model. Once completed, this stent will be useful in monitoring the level of restenosis and will lower the risks presented by implantable stents

    An embedded multichannel telemetry unit for bone strain monitoring

    Get PDF
    Abstract An embedded telemetry unit for bone strain monitoring is presented. The telemetry unit is designed using commercially available components to lower design time and manufacturing costs. The unit can read up to eight strain gauges and measures 2.4 cm × 1.3 cm × 0.7 cm. The unit is powered from a small Li-polymer battery that can be recharged wirelessly through tissue, making it suitable for implanted applications. The average current consumption of the telemetry unit is 1.9 mA while transmitting at a rate of 75 kps and at a sampling rate of 20 Hz. The telemetry unit also features a power-down mode to minimize its power consumption when it is not in use. The telemetry unit operates in the 915-MHz ISM radio band. The unit was tested in an ex vivo setting with an ulna bone from a mouse and in a simulated in vivo setting with a phantom tissue. Bone strain data collected ex vivo shows that the telemetry unit can measure strain with an accuracy comparable to a more expensive benchtop data acquisition system.Peer Reviewe

    Biomedical Tissue Engineering - Where We Go in the Future

    Get PDF
    Researchers and entrepreneurs examine breakthroughs in tissue engineering and regeneration that enhance healing, remodeling, and recovery

    Hyperthermia Induces Functional and Molecular Modifications in Cardiac, Smooth and Skeletal Muscle Cells

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster SessionHyperthermia is used for the treatment of a number of diseases, including muscle injuries, inflammations, tendinitis, and osteoarticular disorder. More recently, hyperthermia has been used as an adjuvant in cancer treatment. Only two studies have shown that hyperthermia leads to hypertrophy in in-vitro models of cardiac and skeletal muscle cells. Functional, biochemical and molecular mechanisms of hyperthermia-induced hypertrophy in muscles remain largely undiscovered. We investigated the effects of mild heat shock (HS) on C2C12 skeletal, HL-1 cardiac and AR-75 smooth muscle cells. Mild HS (20 min 43ºC) induced increases in the cell area in all muscle cells tested. C2C12 cells are a well-accepted model of skeletal muscle fibers, and were selected for complementary studies. First, to biochemically confirm an increase in protein synthesis we measured and found an increase of ~6% in total protein content 24 hrs after HS. Second, we examined potential modifications in calcium (Ca) homeostasis regulation by measuring intracellular Ca. We detected a lower resting level of intracellular Ca and smaller and longer caffeine-induced Ca transients in C2C12 muscle cells 24 hrs after HS. Next, to search for molecular mechanisms involved with HS-induced hypertrophy and calcium homeostasis modifications, mRNA from C2C12 muscle cells was analyzed at different time points after HS (0, 1, 2, and 24 hrs). We used an ABI Step One Plus RT2 PCR Array System and a custom-built 96 gene array. We report for the first time that the expression of key heat-shock, hypertrophy/ metabolic, and Ca+2 signaling genes were altered after HS. Hsp70 and Hsp72 genes were highly expressed (211-1829 fold change) after HS. Also, Myh7 (MHC-I), Myh6, Srf, Ppp3r1 and Pck1 were up-regulated by 2-6 fold change compared with control cells.. Furthermore, a reduction in the expression of RyR and Trdn genes was observed (2- 3.6 fold change) with an associated increase in the expression of IP3R genes (2-4 fold change). These results indicate that hyperthermia modulates not only heat-shock related and hypertrophy genes, but also genes involved with metabolism, apoptosis repression, calcium homeostasis and signaling, and cell homeostasis. Our studies offer an initial exploration of the functional, biochemical and molecular mechanisms that may help explain the beneficially adaptive effects of hyperthermia on muscle function. Our studies shall also prove useful for the refinement of a specific device (EM-Stim) to be employed for the treatment of muscle and bone diseases (See poster by Hatem et al). Importantly, our studies have potential translational applications. By learning how to more precisely use hyperthermia to control specific genes that can improve or treat muscle injuries, musculoskeletal, and cardiovascular diseases, the ensuing benefits shall be unmistakable. Our short and long-term goals are: i) optimize our protocols; ii) test HS in animal models; iii) manipulate expression of promising genes of interest in vitro and in in-vivo animal models; iv) initiate clinical studies to fully translate from the bench to the bed-side

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore