173 research outputs found

    Exogenous interleukin-6, interleukin-13, and interferon-gamma provoke pulmonary abnormality with mild edema in enterovirus 71-infected mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neonatal mice developed neurological disease and pulmonary dysfunction after an infection with a mouse-adapted human Enterovirus 71 (EV71) strain MP4. However, the hallmark of severe human EV71 infection, pulmonary edema (PE), was not evident.</p> <p>Methods</p> <p>To test whether EV71-induced PE required a proinflammatory cytokine response, exogenous pro-inflammatory cytokines were administered to EV71-infected mice during the late stage of infection.</p> <p>Results</p> <p>After intracranial infection of EV71/MP4, 7-day-old mice developed hind-limb paralysis, pulmonary dysfunction, and emphysema. A transient increase was observed in serum IL-6, IL-10, IL-13, and IFN-Îł, but not noradrenaline. At day 3 post infection, treatment with IL-6, IL-13, and IFN-Îł provoked mild PE and severe emphysema that were accompanied by pulmonary dysfunction in EV71-infected, but not herpes simplex virus-1 (HSV-1)-infected control mice. Adult mice did not develop PE after an intracerebral microinjection of EV71 into the nucleus tractus solitarii (NTS). While viral antigen accumulated in the ventral medulla and the NTS of intracerebrally injected mice, neuronal loss was observed in the ventral medulla only.</p> <p>Conclusions</p> <p>Exogenous IL-6, IL-13, and IFN-Îł treatment could induce mild PE and exacerbate pulmonary abnormality of EV71-infected mice. However, other factors such as over-activation of the sympathetic nervous system may also be required for the development of classic PE symptoms.</p

    Cysteamine Attenuates the Decreases in TrkB Protein Levels and the Anxiety/Depression-Like Behaviors in Mice Induced by Corticosterone Treatment

    Get PDF
    OBJECTIVE: Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of anxiety-like behaviors observed in many neuropsychiatric disorders. Brain-derived neurotrophic factor (BDNF) signaling through its receptor TrkB plays an important role in stress-mediated changes in structural as well as functional neuroplasticity. Studies designed to elucidate the mechanisms whereby TrkB signaling is regulated in chronic stress might provide valuable information for the development of new therapeutic strategies for several stress-related psychiatric disorders. MATERIALS AND METHODS: We examined the potential of cysteamine, a neuroprotective compound to attenuate anxiety and depression like behaviors in a mouse model of anxiety/depression induced by chronic corticosterone exposure. RESULTS: Cysteamine administration (150 mg/kg/day, through drinking water) for 21 days significantly ameliorated chronic corticosterone-induced decreases in TrkB protein levels in frontal cortex and hippocampus. Furthermore, cysteamine treatment reversed the anxiety and depression like behavioral abnormalities induced by chronic corticosterone treatment. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in behavioral tests, suggesting that TrkB signaling plays an important role in the antidepressant effects of cysteamine. CONCLUSIONS: The animal studies described here highlight the potential use of cysteamine as a novel therapeutic strategy for glucocorticoid-related symptoms of psychiatric disorders

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Incidence of multiple Herpesvirus infection in HIV seropositive patients, a big concern for Eastern Indian scenario

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human immunodeficiency virus (HIV) infection is associated with an increased risk for human <it>herpes viruses </it>(HHVs) and their related diseases and they frequently cause disease deterioration and therapeutic failures. Methods for limiting the transmission of HHVs require a better understanding of the incidence and infectivity of oral HHVs in HIV-infected patients. This study was designed to determine the seroprevalence of human herpes viruses (CMV, HSV 2, EBV-1, VZV) antibodies and to evaluate their association with age, sex as well as other demographic and behavioral factors.</p> <p>Results</p> <p>A study of 200 HIV positive patients from Eastern India attending the Calcutta Medical College Hospital, Kolkata, West Bengal, Apex Clinic, Calcutta Medical College Hospital and ART Center, School of Tropical Medicine, Kolkata, West Bengal was done. Serum samples were screened for antibodies to the respective viruses using the indirect ELISA in triplicates.</p> <p><it>CytoMegalo virus </it>(CMV), <it>Herpes Simplex virus </it>type 2 (HSV-2), <it>Varicella Zoster virus </it>(VZV), and <it>Epstein Barr virus </it>(EBV-1) were detected in 49%, 47%, 32.5%, and 26% respectively.</p> <p>Conclusion</p> <p>This study has contributed baseline data and provided insights in viral OI and HIV co-infection in Eastern India. This would undoubtedly serve as a basis for further studies on this topic.</p

    Neuropeptide Signaling Differentially Affects Phase Maintenance and Rhythm Generation in SCN and Extra-SCN Circadian Oscillators

    Get PDF
    Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC2, play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC2 receptors (Vipr2−/−) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC2 receptor expression; both VPAC2 receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC2 receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2−/− mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC2 receptor. Vipr2−/− SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2−/− Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2−/− cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2−/− mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2−/− animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting

    Airborne particulate matter and mitochondrial damage: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM) on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals.</p> <p>Methods</p> <p>In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn), an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn) was determined by real-time PCR in blood DNA obtained on the 1<sup>st </sup>(time 1) and 4<sup>th </sup>day (time 2) of the same work week. Individual exposures to PM<sub>10</sub>, PM<sub>1</sub>, coarse particles (PM<sub>10</sub>-PM<sub>1</sub>) and airborne metal components of PM<sub>10 </sub>(chromium, lead, arsenic, nickel, manganese) were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area.</p> <p>Results</p> <p>RMtDNAcn was higher on the 4<sup>th </sup>day (mean = 1.31; 95%CI = 1.22 to 1.40) than on the 1<sup>st </sup>day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17). PM exposure was positively associated with RMtDNAcn on either the 4<sup>th </sup>(PM<sub>10</sub>: ÎČ = 0.06, 95%CI = -0.06 to 0.17; PM<sub>1</sub>: ÎČ = 0.08, 95%CI = -0.08 to 0.23; coarse: ÎČ = 0.06, 95%CI = -0.06 to 0.17) or the 1<sup>st </sup>day (PM<sub>10</sub>: ÎČ = 0.18, 95%CI = 0.09 to 0.26; PM<sub>1</sub>: ÎČ = 0.23, 95%CI = 0.11 to 0.35; coarse: ÎČ = 0.17, 95%CI = 0.09 to 0.26). Metal concentrations were not associated with RMtDNAcn.</p> <p>Conclusions</p> <p>PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.</p

    Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk

    Get PDF
    An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells

    No full text
    Wen-Pin Su,1,2 Fong-Yu Cheng,3 Dar-Bin Shieh,3&amp;ndash;6 Chen-Sheng Yeh,5&amp;ndash;7 Wu-Chou Su1,2,81Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University; 2Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University; 3Institute of Oral Medicine, College of Medicine, National Cheng Kung University; 4Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University; 5Advanced Optoelectronic Technology Center; 6Center for Frontier Materials and Micro/Nano Science and Technology, and 7Department of Chemistry, National Cheng Kung University; 8Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.Abstract: Background: Effective cancer chemotherapy remains an important issue in cancer treatment, and signal transducer and activator of transcription-3 (Stat3) activation leads to cellular resistance of anticancer agents. Polymers are ideal vectors to carry both chemotherapeutics and small interfering ribonucleic acid (siRNA) to enhance antitumor efficacy. In this paper, poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with paclitaxel and Stat3 siRNA were successfully synthesized, and their applications in cancer cells were investigated.Methods: Firstly, paclitaxel was enclosed by PLGA nanoparticles through solvent evaporation. They were then coated with cationic polyethylenimine polymer (PLGA-PEI-TAX), enabling it to carry Stat3 siRNA on its surface through electrostatic interactions (PLGA-PEI-TAX-S3SI). The size, zeta potential, deliver efficacy, and release profile of the PLGA nanocomplexes were characterized in vitro. The cellular uptake, intracellular nanoparticle trajectory, and subsequent cellular events were evaluated after treatment with various PLGA nanocomplexes in human lung cancer A549 cells and A549-derived paclitaxel-resistant A549/T12 cell lines with &amp;alpha;-tubulin mutation.Results: A549 and A549/T12 cells contain constitutively activated Stat3, and silencing Stat3 by siRNA made both cancer cells more sensitive to paclitaxel. Therefore, PLGA-PEI-TAX-S3SI was synthesized to test its therapeutic role in A549 and A549/T12 cells. Transmission electron microscopy showed the size of PLGA-PEI-TAX-S3SI to be around 250 nm. PLGA-PEI nanoparticles were nontoxic. PLGA-PEI-TAX was taken up by A549 and A549/T12 cells more than free paclitaxel, and they induced more condensed microtubule bundles and had higher cytotoxicity in these cancer cells. Moreover, the yellowish fluorescence observed in the cytoplasm of the cancer cells indicates that the PLGA-PEI nanoparticles were still simultaneously delivering Oregon Green paclitaxel and cyanine-5-labeled Stat3 siRNA 3 hours after treatment. Furthermore, after the cancer cells were incubated with the synthesized PLGA nanocomplexes, PLGA-PEI-TAX-S3SI suppressed Stat3 expression and induced more cellular apoptosis in A549 and A549/T12 cells compared with PLGA-PEI-TAX.Conclusion: The PLGA-PEI-TAX-S3SI complex provides a new therapeutic strategy to control cancer cell growth.Keywords: PLGA, nanoparticle, paclitaxel, siRNA, simultaneous drug deliver
    • 

    corecore