48 research outputs found
Novel Role for p110ÎČ PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells
We thank Anna-Lena Berg (AstraZeneca, Lund) and Cheryl Scudamore (MRC, Harwell, UK) for histological analysis, Julie Foster (Barts Cancer Institute, London) for CT scans, Johan Swinnen and Frank Claessens (Leuven University, Belgium) for discussion and AR-luciferase reporter plasmids, Florian Guillou (INRA, CNRS, UniversitĂ© de Tours, France) for the AMH-Cre mouse line and Laura Milne (MRC Centre for Reproductive Health, The University of Edinburgh) for technical support. We thank the members of the Cell Signalling group for critical input.International audienceThe organismal roles of the ubiquitously expressed class I PI3K isoform p110ÎČ remain largely unknown. Using a new kinase-dead knockin mouse model that mimics constitutive pharmacological inactivation of p110ÎČ, we document that full inactivation of p110ÎČ leads to embryonic lethality in a substantial fraction of mice. Interestingly, the homozygous p110ÎČ kinase-dead mice that survive into adulthood (maximum ~26% on a mixed genetic background) have no apparent phenotypes, other than subfertility in females and complete infertility in males. Systemic inhibition of p110ÎČ results in a highly specific blockade in the maturation of spermatogonia to spermatocytes. p110ÎČ was previously suggested to signal downstream of the c-kit tyrosine kinase receptor in germ cells to regulate their proliferation and survival. We now report that p110ÎČ also plays a germ cell-extrinsic role in the Sertoli cells (SCs) that support the developing sperm, with p110ÎČ inactivation dampening expression of the SC-specific Androgen Receptor (AR) target gene Rhox5, a homeobox gene critical for spermatogenesis. All extragonadal androgen-dependent functions remain unaffected by global p110ÎČ inactivation. In line with a crucial role for p110ÎČ in SCs, selective inactivation of p110ÎČ in these cells results in male infertility. Our study is the first documentation of the involvement of a signalling enzyme, PI3K, in the regulation of AR activity during spermatogenesis. This developmental pathway may become active in prostate cancer where p110ÎČ and AR have previously been reported to functionally interac
National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio : a pooled analysis of 458 population-based studies in Asian and Western countries
Background: Although high-density lipoprotein (HDL) and non-HDL cholesterol have opposite associations with coronary heart disease, multi-country reports of lipid trends only use total cholesterol (TC). Our aim was to compare trends in total, HDL and nonHDL cholesterol and the total-to-HDL cholesterol ratio in Asian and Western countries. Methods: We pooled 458 population-based studies with 82.1 million participants in 23 Asian and Western countries. We estimated changes in mean total, HDL and non-HDL cholesterol and mean total-to-HDL cholesterol ratio by country, sex and age group. Results: Since similar to 1980, mean TC increased in Asian countries. In Japan and South Korea, the TC rise was due to rising HDL cholesterol, which increased by up to 0.17 mmol/L per decade in Japanese women; in China, it was due to rising non-HDL cholesterol. TC declined in Western countries, except in Polish men. The decline was largest in Finland and Norway, at similar to 0.4 mmol/L per decade. The decline in TC in most Western countries was the net effect of an increase in HDL cholesterol and a decline in non-HDL cholesterol, with the HDL cholesterol increase largest in New Zealand and Switzerland. Mean total-to-HDL cholesterol ratio declined in Japan, South Korea and most Western countries, by as much as similar to 0.7 per decade in Swiss men (equivalent to similar to 26% decline in coronary heart disease risk per decade). The ratio increased in China. Conclusions: HDL cholesterol has risen and the total-to-HDL cholesterol ratio has declined in many Western countries, Japan and South Korea, with only a weak correlation with changes in TC or non-HDL cholesterol.Peer reviewe
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (nâ=â143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (nâ=â152), or no hydrocortisone (nâ=â108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (nâ=â137), shock-dependent (nâ=â146), and no (nâ=â101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants
© The Author(s) 2018. Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
XLVIII Coloquio Argentino de EstadĂstica. VI Jornada de EducaciĂłn EstadĂstica Martha Aliaga Modalidad virtual
Esta publicaciĂłn es una compilaciĂłn de las actividades realizadas en el marco del XLVIII Coloquio Argentino de EstadĂstica y la VI Jornada de EducaciĂłn EstadĂstica Martha Aliaga organizada por la Sociedad Argentina de EstadĂstica y la Facultad de Ciencias EconĂłmicas. Se presenta un resumen para cada uno de los talleres, cursos realizados, ponencias y poster presentados. Para los dos Ășltimos se dispone de un hipervĂnculo que direcciona a la presentaciĂłn del trabajo. Ellos obedecen a distintas temĂĄticas de la estadĂstica con una sesiĂłn especial destinada a la aplicaciĂłn de modelos y anĂĄlisis de datos sobre COVID-19.Fil: Saino, MartĂn. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Stimolo, MarĂa InĂ©s. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Ortiz, Pablo. Universidad Nacional de cĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Guardiola, Mariana. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Aguirre, Alberto Frank LĂĄzaro. Universidade Federal de Alfenas. Departamento de EstatĂstica. Instituto de CiĂȘncias Exatas; Brasil.Fil: Alves Nogueira, Denismar. Universidade Federal de Alfenas. Departamento de EstatĂstica. Instituto de CiĂȘncias Exatas; Brasil.Fil: Beijo, Luiz Alberto. Universidade Federal de Alfenas. Departamento de EstatĂstica. Instituto de CiĂȘncias Exatas; Brasil.Fil: Solis, Juan Manuel. Universidad Nacional de Jujuy. Centro de Estudios en BioestadĂstica, BioinformĂĄtica y AgromĂĄtica; Argentina.Fil: Alabar, Fabio. Universidad Nacional de Jujuy. Centro de Estudios en BioestadĂstica, BioinformĂĄtica y AgromĂĄtica; Argentina.Fil: Ruiz, SebastiĂĄn LeĂłn. Universidad Nacional de Jujuy. Centro de Estudios en BioestadĂstica, BioinformĂĄtica y AgromĂĄtica; Argentina.Fil: Hurtado, Rafael. Universidad Nacional de Jujuy; Argentina.Fil: AlegrĂa JimĂ©nez, Alfredo. Universidad TĂ©cnica Federico Santa MarĂa. Departamento de MatemĂĄtica; Chile.Fil: Emery, Xavier. Universidad de Chile. Departamento de IngenierĂa en Minas; Chile.Fil: Emery, Xavier. Universidad de Chile. Advanced Mining Technology Center; Chile.Fil: Ălvarez-Vaz, RamĂłn. Universidad de la RepĂșblica. Instituto de EstadĂstica. Departamento de MĂ©todos Cuantitativos; Uruguay.Fil: Massa, Fernando. Universidad de la RepĂșblica. Instituto de EstadĂstica. Departamento de MĂ©todos Cuantitativos; Uruguay.Fil: Vernazza, Elena. Universidad de la RepĂșblica. Facultad de Ciencias EconĂłmicas y de AdministraciĂłn. Instituto de EstadĂstica; Uruguay.Fil: Lezcano, Mikaela. Universidad de la RepĂșblica. Facultad de Ciencias EconĂłmicas y de AdministraciĂłn. Instituto de EstadĂstica; Uruguay.Fil: Urruticoechea, Alar. Universidad CatĂłlica del Uruguay. Facultad de Ciencias de la Salud. Departamento de NeurocogniciĂłn; Uruguay.Fil: del Callejo Canal, Diana. Universidad Veracruzana. Instituto de InvestigaciĂłn de Estudios Superiores, EconĂłmicos y Sociales; MĂ©xico.Fil: Canal MartĂnez, Margarita. Universidad Veracruzana. Instituto de InvestigaciĂłn de Estudios Superiores, EconĂłmicos y Sociales; MĂ©xico.Fil: Ruggia, Ornela. CONICET; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Agropecuarias. Departamento de desarrollo rural; Argentina.Fil: Tolosa, Leticia Eva. Universidad Nacional de CĂłrdoba; Argentina. Universidad CatĂłlica de CĂłrdoba; Argentina.Fil: Rojo, MarĂa Paula. Universidad Nacional de CĂłrdoba; Argentina.Fil: Nicolas, MarĂa Claudia. Universidad Nacional de CĂłrdoba; Argentina. Universidad CatĂłlica de CĂłrdoba; Argentina.Fil: Barbaroy, TomĂĄs. Universidad Nacional de CĂłrdoba; Argentina.Fil: Villarreal, Fernanda. CONICET, Universidad Nacional del Sur. Instituto de MatemĂĄtica de BahĂa Blanca (INMABB); Argentina.Fil: Pisani, MarĂa Virginia. Universidad Nacional del Sur. Departamento de MatemĂĄtica; Argentina.Fil: Quintana, Alicia. Universidad Nacional del Sur. Departamento de MatemĂĄtica; Argentina.Fil: Elorza, MarĂa Eugenia. CONICET. Universidad Nacional del Sur. Instituto de Investigaciones EconĂłmicas y Sociales del Sur; Argentina.Fil: Peretti, Gianluca. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Buzzi, Sergio MartĂn. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de EstadĂstica y MatemĂĄtica; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂsticas. Instituto de Investigaciones TeĂłricas y Aplicadas en EstadĂstica; Argentina.Fil: Settecase, Eugenia. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Paccapelo, MarĂa Valeria. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Cuesta, Cristina. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂsticas. Instituto de Investigaciones TeĂłricas y Aplicadas en EstadĂstica; Argentina.Fil: Saenz, JosĂ© Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Luna, Silvia. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Paredes, Paula. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de TecnologĂa Agropecuaria. EstaciĂłn Experimental Agropecuaria Santa Cruz; Argentina.Fil: Maglione, Dora. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Rosas, Juan E. Instituto Nacional de InvestigaciĂłn Agropecuaria (INIA); Uruguay.Fil: PĂ©rez de Vida, Fernando. Instituto Nacional de InvestigaciĂłn Agropecuaria (INIA); Uruguay.Fil: Marella, Muzio. Sociedad AnĂłnima Molinos Arroceros Nacionales (SAMAN); Uruguay.Fil: Berberian, Natalia. Universidad de la RepĂșblica. Facultad de AgronomĂa; Uruguay.Fil: Ponce, Daniela. Universidad Estadual Paulista. Facultad de Medicina; Brasil.Fil: Silveira, Liciana Vaz de A. Universidad Estadual Paulista; Brasil.Fil: Freitas Galletti, Agda Jessica de. Universidad Estadual Paulista; Brasil.Fil: Bellassai, Juan Carlos. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Centro de InvestigaciĂłn y Estudios de MatemĂĄticas (CIEM-Conicet); Argentina.Fil: Pappaterra, MarĂa LucĂa. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Centro de InvestigaciĂłn y Estudios de MatemĂĄticas (CIEM-Conicet); Argentina.Fil: Ojeda, Silvia MarĂa. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂa, FĂsica y ComputaciĂłn; Argentina.Fil: Ascua, Melina BelĂ©n. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: RoldĂĄn, Dana Agustina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Rodi, Ayrton Luis. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Ventre, Giuliana. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: GonzĂĄlez, Agustina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, FĂsico-QuĂmicas y Naturales. Departamento de MatemĂĄtica; Argentina.Fil: Palacio, Gabriela. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, FĂsico-QuĂmicas y Naturales. Departamento de MatemĂĄtica; Argentina.Fil: Bigolin, Sabina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, FĂsico-QuĂmicas y Naturales. Departamento de MatemĂĄtica; Argentina.Fil: Ferrero, Susana. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, FĂsico-QuĂmicas y Naturales. Departamento de MatemĂĄtica; Argentina.Fil: Del Medico, Ana Paula. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Pratta, Guillermo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Tenaglia, Gerardo. Instituto Nacional de TecnologĂa Agropecuaria. Instituto de InvestigaciĂłn y Desarrollo TecnolĂłgico para la Agricultura Familiar; Argentina.Fil: Lavalle, Andrea. Universidad Nacional del Comahue. Departamento de EstadĂstica; Argentina.Fil: Demaio, Alejo. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: HernĂĄndez, Paz. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Di Palma, Fabricio. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Calizaya, Pablo. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Avalis, Francisca. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de CĂłrdoba. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina.Fil: FernĂcola, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica; Argentina.Fil: Nuñez, Myriam. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica; Argentina.Fil: Dundray, , FabiĂĄn. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica; Argentina.Fil: Calviño, Amalia. Universidad de Buenos Aires. Instituto de QuĂmica y Metabolismo del FĂĄrmaco. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina.Fil: FarfĂĄn Machaca, Yheni. Universidad Nacional de San Antonio Abad del Cusco. Departamento AcadĂ©mico de MatemĂĄticas y EstadĂstica; Argentina.Fil: Paucar, Guillermo. Universidad Nacional de San Antonio Abad del Cusco. Departamento AcadĂ©mico de MatemĂĄticas y EstadĂstica; Argentina.Fil: Coaquira, Frida. Universidad Nacional de San Antonio Abad del Cusco. Escuela de posgrado UNSAAC; Argentina.Fil: Ferreri, NoemĂ M. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂa y Agrimensura; Argentina.Fil: Pascaner, Melina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂa y Agrimensura; Argentina.Fil: Martinez, Facundo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂa y Agrimensura; Argentina.Fil: Bossolasco, MarĂa Luisa. Universidad Nacional de TucumĂĄn. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Centro de Estudios FotosintĂ©ticos y BioquĂmicos (CEFOBI); Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Centro de Estudios FotosintĂ©ticos y BioquĂmicos (CEFOBI); Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios FotosintĂ©ticos y BioquĂmicos (CEFOBI); Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Centro de Estudios FotosintĂ©ticos y BioquĂmicos (CEFOBI); Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina.Fil: Valentini, Gabriel. Instituto Nacional de TecnologĂa Agropecuaria. EstaciĂłn Experimental Agropecuaria INTA San Pedro; Argentina.Fil: Chiapella, Luciana C.. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas; Argentina.Fil: Chiapella, Luciana C. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas (CONICET); Argentina.Fil: Grendas, Leandro. Universidad Buenos Aires. Facultad de Medicina. Instituto de FarmacologĂa; Argentina.Fil: Daray, Federico. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas (CONICET); Argentina.Fil: Daray, Federico. Universidad Buenos Aires. Facultad de Medicina. Instituto de FarmacologĂa; Argentina.Fil: Leal, Danilo. Universidad AndrĂ©s Bello. Facultad de IngenierĂa; Chile.Fil: Nicolis, Orietta. Universidad AndrĂ©s Bello. Facultad de IngenierĂa; Chile.Fil: Bonadies, MarĂa Eugenia. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica; Argentina.Fil: Ponteville, Christiane. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂa y Agrimensura; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂa y Agrimensura; Argentina.Fil: Dillon, Justina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂa y Agrimensura; Argentina.Fil: Carnevali, Graciela H. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂa y Agrimensura; Argentina.Fil: Justo, Claudio Eduardo. Universidad Nacional de la Plata. Facultad de IngenierĂa. Departamento de Agrimensura. Grupo de Aplicaciones MatemĂĄticas y EstadĂsticas (UIDET); Argentina.Fil: Iglesias, Maximiliano. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Instituto de EstadĂstica y DemografĂa; Argentina.Fil: GĂłmez, Pablo SebastiĂĄn. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Sociales. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina.Fil: Real, Ariel HernĂĄn. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Vargas, Silvia Lorena. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: LĂłpez Calcagno, Yanil. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Batto, Mabel. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Sampaolesi, Edgardo. Universidad Nacional de LujĂĄn. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Tealdi, Juan Manuel. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Buzzi, Sergio MartĂn. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de EstadĂstica y MatemĂĄtica; Argentina.Fil: GarcĂa BazĂĄn, Gaspar. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Monroy Caicedo, Xiomara Alejandra. Universidad Nacional de Rosario; Argentina.Fil: BermĂșdez Rubio, Dagoberto. Universidad Santo TomĂĄs. Facultad de EstadĂstica; Colombia.Fil: Ricci, Lila. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Centro Marplatense de Investigaciones MatemĂĄticas; Argentina.Fil: Kelmansky, Diana Mabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de CĂĄlculo; Argentina.Fil: Rapelli, Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Escuela de EstadĂstica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂstica; Argentina.Fil: GarcĂa, MarĂa del Carmen. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Escuela de EstadĂstica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂstica; Argentina.Fil: Bussi, Javier. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂstica; Argentina.Fil: MĂ©ndez, Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂstica (IITAE); Argentina.Fil: GarcĂa Mata, Luis Ăngel. Universidad Nacional AutĂłnoma de MĂ©xico. Facultad de Estudios Superiores AcatlĂĄn; MĂ©xico.Fil: RamĂrez GonzĂĄlez, Marco Antonio. Universidad Nacional AutĂłnoma de MĂ©xico. Facultad de Estudios Superiores AcatlĂĄn; MĂ©xico.Fil: Rossi, Laura. Universidad Nacional de Cuyo. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Vicente, Gonzalo. Universidad Nacional de Cuyo. Facultad de Ciencias EconĂłmicas; Argentina. Universidad PĂșblica de Navarra. Departamento de EstadĂstica, InformĂĄtica y MatemĂĄticas; España.Fil: Scavino, Marco. Universidad de la RepĂșblica. Facultad de Ciencias EconĂłmicas y de AdministraciĂłn. Instituto de EstadĂstica; Uruguay.Fil: EstragĂł, Virginia. Presidencia de la RepĂșblica. ComisiĂłn Honoraria para la Salud Cardiovascular; Uruguay.Fil: Muñoz, MatĂas. Presidencia de la RepĂșblica. ComisiĂłn Honoraria para la Salud Cardiovascular; Uruguay.Fil: Castrillejo, AndrĂ©s. Universidad de la RepĂșblica. Facultad de Ciencias EconĂłmicas y de AdministraciĂłn. Instituto de EstadĂstica; Uruguay.Fil: Da Rocha, Naila Camila. Universidade Estadual Paulista JĂșlio de Mesquita Filho- UNESP. Departamento de BioestadĂstica; BrasilFil: Macola Pacheco Barbosa, Abner. Universidade Estadual Paulista JĂșlio de Mesquita Filho- UNESP; Brasil.Fil: Corrente, JosĂ© Eduardo. Universidade Estadual Paulista JĂșlio de Mesquita Filho â UNESP. Instituto de Biociencias. Departamento de BioestadĂstica; Brasil.Fil: Spataro, Javier. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de EconomĂa; Argentina.Fil: Salvatierra, Luca Mauricio. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Nahas, EstefanĂa. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: MĂĄrquez, Viviana. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Boggio, Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂstica; Argentina.Fil: Arnesi, Nora. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂstica; Argentina.Fil: Harvey, Guillermina. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂstica; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Instituto de Investigaciones TeĂłricas y Aplicadas de la Escuela de EstadĂstica; Argentina.Fil: Wojdyla, Daniel. Duke University. Duke Clinical Research Institute; Estados Unidos.Fil: Blasco, Manuel. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Instituto de EconomĂa y Finanzas; Argentina.Fil: Stanecka, Nancy. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Instituto de EstadĂstica y DemografĂa; Argentina.Fil: Caro, Valentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Instituto de EstadĂstica y DemografĂa; Argentina.Fil: Sigal, Facundo. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de EconomĂa; Argentina.Fil: Blacona, MarĂa Teresa. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica. Escuela de EstadĂstica; Argentina.Fil: Rodriguez, Norberto Vicente. Universidad Nacional de Tres de Febrero; Argentina.Fil: Loiacono, Karina Valeria. Universidad Nacional de Tres de Febrero; Argentina.Fil: GarcĂa, Gregorio. Instituto Nacional de EstadĂstica y Censos. DirecciĂłn Nacional de MetodologĂa EstadĂstica; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de EstadĂstica y Censos. DirecciĂłn Nacional de MetodologĂa EstadĂstica; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de EstadĂstica y Censos. DirecciĂłn Nacional de MetodologĂa EstadĂstica; Argentina.Fil: Funkner, SofĂa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Dieser, MarĂa Paula. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: MartĂn, MarĂa Cristina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: MartĂn, MarĂa Cristina. Universidad Nacional del Sur. Departamento de MatemĂĄtica; Argentina.Fil: Peitton, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias EconĂłmicas y EstadĂstica; Argentina. Queensland Department of Agriculture and Fisheries; Australia.Fil: Borgognone, MarĂa Gabriela. Queensland Department of Agriculture and Fisheries; Australia.Fil: Terreno, Dante D. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de Contabilidad; Argentina.Fil: Castro GonzĂĄlez, Enrique L. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de Contabilidad; Argentina.Fil: RoldĂĄn, Janina Micaela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: GonzĂĄlez, Gisela Paula. CONICET. Instituto de Investigaciones EconĂłmicas y Sociales del Sur; Argentina. Universidad Nacional del Sur; Argentina.Fil: De Santis, Mariana. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas; Argentina.Fil: Geri, Milva. CONICET. Instituto de Investigaciones EconĂłmicas y Sociales del Sur; Argentina.Fil: Geri, Milva. Universidad Nacional del Sur. Departamento de EconomĂa; Argentina. Universidad Nacional del Sur. Departamento de MatemĂĄtica; Argentina.Fil: Marfia, MartĂn. Universidad Nacional de la Plata. Facultad de IngenierĂa. Departamento de Ciencias BĂĄsicas; Argentina.Fil: Kudraszow, Nadia L. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de MatemĂĄtica de La Plata; Argentina.Fil: Closas, Humberto. Universidad TecnolĂłgica Nacional; Argentina.Fil: Amarilla, Mariela. Universidad TecnolĂłgica Nacional; Argentina.Fil: Jovanovich, Carina. Universidad TecnolĂłgica Nacional; Argentina.Fil: de Castro, Idalia. Universidad Nacional del Nordeste; Argentina.Fil: Franchini, Noelia. Universidad Nacional del Nordeste; Argentina.Fil: Cruz, Rosa. Universidad Nacional del Nordeste; Argentina.Fil: Dusicka, Alicia. Universidad Nacional del Nordeste; Argentina.Fil: Quaglino, Marta. Universidad Nacional de Rosario; Argentina.Fil: Kalauz, Roberto JosĂ© AndrĂ©s. Investigador Independiente; Argentina.Fil: GonzĂĄlez, Mariana VerĂłnica. Universidad Nacional de CĂłrdoba. Facultad de Ciencias EconĂłmicas. Departamento de EstadĂstica y MatemĂĄticas; Argentina.Fil: Lescano, Maira Celeste.
A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data
MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganismsâ role in ecology and human health
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprungâs disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprungâs disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36â39) and median bodyweight at presentation was 2·8 kg (2·3â3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
pâ€0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88â4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59â2·79], p<0·0001), sepsis at presentation (1·20
[1·04â1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4â5 vs ASA 1â2, 1·82 [1·40â2·35], p<0·0001; ASA 3 vs ASA 1â2, 1·58, [1·30â1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02â1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41â2·71], p=0·0001; parenteral nutrition 1·35, [1·05â1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47â0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50â0·86], p=0·0024) or percutaneous central line (0·69 [0·48â1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030
COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study
Background:
The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms.
Methods:
International, prospective observational study of 60â109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms.
Results:
âTypicalâ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (â€â18 years: 69, 48, 23; 85%), older adults (â„â70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each Pâ<â0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country.
Interpretation:
This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men