450 research outputs found
Improved Measurements of Partial Rate Asymmetry in B -> h h Decays
We report improved measurements of the partial rate asymmetry (Acp) in B -> h
h decays with 140fb^-1 of data collected with the Belle detector at the KEKB
e+e- collider. Here h stands for a charged or neutral pion or kaon and in total
five decay modes are included: K-+ pi+-, K0s pi-+, K-+ pi0, pi-+ pi0 and K0s
pi0. The flavor of the last decay mode is determined from the accompanying B
meson. Using a data sample 4.7 times larger than that of our previous
measurement, we find Acp(K-+ pi+-) -0.088+-0.035+-0.013, 2.4 sigma from zero.
Results for other decay modes are also presented.Comment: 9 pages, 1 figur
GC-Rich Sequence Elements Recruit PRC2 in Mammalian ES Cells
Polycomb proteins are epigenetic regulators that localize to developmental loci in the early embryo where they mediate lineage-specific gene repression. In Drosophila, these repressors are recruited to sequence elements by DNA binding proteins associated with Polycomb repressive complex 2 (PRC2). However, the sequences that recruit PRC2 in mammalian cells have remained obscure. To address this, we integrated a series of engineered bacterial artificial chromosomes into embryonic stem (ES) cells and examined their chromatin. We found that a 44 kb region corresponding to the Zfpm2 locus initiates de novo recruitment of PRC2. We then pinpointed a CpG island within this locus as both necessary and sufficient for PRC2 recruitment. Based on this causal demonstration and prior genomic analyses, we hypothesized that large GC-rich elements depleted of activating transcription factor motifs mediate PRC2 recruitment in mammals. We validated this model in two ways. First, we showed that a constitutively active CpG island is able to recruit PRC2 after excision of a cluster of activating motifs. Second, we showed that two 1 kb sequence intervals from the Escherichia coli genome with GC-contents comparable to a mammalian CpG island are both capable of recruiting PRC2 when integrated into the ES cell genome. Our findings demonstrate a causal role for GC-rich sequences in PRC2 recruitment and implicate a specific subset of CpG islands depleted of activating motifs as instrumental for the initial localization of this key regulator in mammalian genomes.Burroughs Wellcome FundCharles E. Culpeper FoundationMassachusetts General HospitalBroad Institute of MIT and Harvar
The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state
We introduce and analyze a minimal model of epigenetic silencing in budding
yeast, built upon known biomolecular interactions in the system. Doing so, we
identify the epigenetic marks essential for the bistability of epigenetic
states. The model explicitly incorporates two key chromatin marks, namely H4K16
acetylation and H3K79 methylation, and explores whether the presence of
multiple marks lead to a qualitatively different systems behavior. We find that
having both modifications is important for the robustness of epigenetic
silencing. Besides the silenced and transcriptionally active fate of chromatin,
our model leads to a novel state with bivalent (i.e., both active and
silencing) marks under certain perturbations (knock-out mutations, inhibition
or enhancement of enzymatic activity). The bivalent state appears under several
perturbations and is shown to result in patchy silencing. We also show that the
titration effect, owing to a limited supply of silencing proteins, can result
in counter-intuitive responses. The design principles of the silencing system
is systematically investigated and disparate experimental observations are
assessed within a single theoretical framework. Specifically, we discuss the
behavior of Sir protein recruitment, spreading and stability of silenced
regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the
controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Evidence for direct CP violation in B-0 -> K+pi(-) decays
We report evidence for direct CP violation in the decay B-0-->K(+)pi(-) with 253 fb(-1) of data collected with the Belle detector at the KEKB e(+)e(-) collider. Using 275x10(6) B(B) over bar pairs we observe a B-->K(+/-)pi(-/+) signal with 2140+/-53 events. The measured CP violating asymmetry is A(CP)(K(+)pi(-))=-0.101+/-0.025(stat)+/-0.005(syst), corresponding to a significance of 3.9sigma including systematics. We also search for CP violation in the decays B+-->K(+)pi(0) and B+-->pi(+)pi(0). The measured CP violating asymmetries are A(CP)(K(+)pi(0))=0.04+/-0.05(stat)+/-0.02(syst) and A(CP)(pi(+)pi(0))=-0.02+/-0.10(stat)+/-0.01(syst), corresponding to the intervals -0.05< A(CP)(K(+)pi(0))<0.13 and -0.18< A(CP)(pi(+)pi(0))<0.14 at 90% confidence level
Measurement of forward-backward asymmetry and wilson coefficients in B -> K(*)l(+)l(-)
We report the first measurement of the forward-backward asymmetry and the ratios of Wilson coefficients A(9)/A(7) and A(10)/A(7) in B -> K(*)l(+)l(-), where l represents an electron or a muon. We find evidence for the forward-backward asymmetry with a significance of 3.4 sigma. The results are obtained from a data sample containing 386x10(6) (B) over bar pairs that were collected on the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider
Measurements of B decays to two kaons
We report measurements of B meson decays to two kaons using 253 fb(-1) of data collected with the Belle detector at the KEKB energy-asymmetric e(+)e(-) collider. We find evidence for signals in B+->(K) over bar K-0(+) and B-0-> K-0(K) over bar (0) with significances of 3.0 sigma and 3.5 sigma, respectively. (Charge-conjugate modes are included.) The corresponding branching fractions are measured to be B(B+->(K) over bar K-0(+))=(1.0 +/- 0.4 +/- 0.1)x10(-6) and B(B-0-> K-0(K) over bar (0))=(0.8 +/- 0.3 +/- 0.1)x10(-6). These decay modes are examples of hadronic b -> d transitions. No signal is observed in the decay B-0-> K+K-, and we set an upper limit of 3.7x10(-7) at 90% confidence level
Observation of large CP violation and evidence for direct CP violation in B0+p- decays
We report the first observation of CP violation in B0+p- decays based on 152x106 U(4S)B (B) over bar decays collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. We reconstruct a B0+p- CP eigenstate and identify the flavor of the accompanying B meson from its decay products. From the distribution of the time intervals between the two B meson decay points, we obtain App=+0.580.15(stat)0.07(syst) and Spp=-1.000.21(stat)0.07(syst). We rule out the CP-conserving case, App=Spp=0, at a level of 5.2 standard deviations. We also find evidence for direct CP violation with a significance at or greater than 3.2 standard deviations for any Spp value
Measurement of polarization and triple-product correlations in B -> phi K-* decays
We present measurements of decay amplitudes and triple-product correlations in B ->phi K-* decays based on 253 fb(-1) of data recorded at the Upsilon(4S) resonance with the Belle detector at the KEKB e(+)e(-) storage ring. The decay amplitudes for the three different helicity states are determined from the angular distributions of final-state particles. The longitudinal polarization amplitudes are found to be 0.45 +/- 0.05 +/- 0.02 for B-0->phi K-*0 and 0.52 +/- 0.08 +/- 0.03 for B+->phi K*+ decays. CP- and T-odd CP-violating triple-product asymmetries are measured to be consistent with zero
- …
