51 research outputs found

    National Neuroinformatics Framework for Canadian Consortium on Neurodegeneration in Aging (CCNA)

    Get PDF
    The Canadian Institutes for Health Research (CIHR) launched the “International Collaborative Research Strategy for Alzheimer's Disease” as a signature initiative, focusing on Alzheimer's Disease (AD) and related neurodegenerative disorders (NDDs). The Canadian Consortium for Neurodegeneration and Aging (CCNA) was subsequently established to coordinate and strengthen Canadian research on AD and NDDs. To facilitate this research, CCNA uses LORIS, a modular data management system that integrates acquisition, storage, curation, and dissemination across multiple modalities. Through an unprecedented national collaboration studying various groups of dementia-related diagnoses, CCNA aims to investigate and develop proactive treatment strategies to improve disease prognosis and quality of life of those affected. However, this constitutes a unique technical undertaking, as heterogeneous data collected from sites across Canada must be uniformly organized, stored, and processed in a consistent manner. Currently clinical, neuropsychological, imaging, genomic, and biospecimen data for 509 CCNA subjects have been uploaded to LORIS. In addition, data validation is handled through a number of quality control (QC) measures such as double data entry (DDE), conflict flagging and resolution, imaging protocol checks1, and visual imaging quality validation. Site coordinators are also notified of incidental findings found in MRI reads or biosample analyses. Data is then disseminated to CCNA researchers via a web-based Data-Querying Tool (DQT). This paper will detail the wide array of capabilities handled by LORIS for CCNA, aiming to provide the necessary neuroinformatic infrastructure for this nation-wide investigation of healthy and diseased aging

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Research and Development for Near Detector Systems Towards Long Term Evolution of Ultra-precise Long-baseline Neutrino Experiments

    Get PDF
    With the discovery of non-zero value of θ13\theta_{13} mixing angle, the next generation of long-baseline neutrino (LBN) experiments offers the possibility of obtaining statistically significant samples of muon and electron neutrinos and anti-neutrinos with large oscillation effects. In this document we intend to highlight the importance of Near Detector facilities in LBN experiments to both constrain the systematic uncertainties affecting oscillation analyses but also to perform, thanks to their close location, measurements of broad benefit for LBN physics goals. A strong European contribution to these efforts is possible

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Status of single phase and dual phase DUNE prototype detectors at CERN

    No full text
    DUNE is a next-generation long-baseline neutrino oscillation experiment designed to measure the neutrino mass hierarchy and CP-violation in the lepton sector. ProtoDUNE-SP and ProtoDUNE-DP are prototype detectors for the DUNE experiment, testing the single-phase and dual-phase liquid argon time projection chamber technologies, respectively. The detectors represent a key step towards realising the full 10 kt liquid argon time projection chamber detector modules that will form the far detector of DUNE. The status of the two ProtoDUNE detectors and the future timescales of the experiments are discussed

    Sterile Neutrino searches with MINOS and MINOS+

    No full text
    A search for sterile neutrinos was performed by looking for muon neutrino disappearance using the MINOS/MINOS+ detectors. The two detectors are at baselines of 1.04 km and 735 km from the neutrino production target of the NuMI neutrino beam at Fermilab. The data exposure consists of 10.56×102010.56 \times 10^{20} protons-on-target from a beam configuration with a neutrino energy distribution peaked at 3 GeV and a further 5.8×10205.8 \times 10^{20} protons-on-target in a higher energy configuration with a beam peak energy of 7 GeV. A simultaneous analysis of the νμ\nu_{\mu} charged-current and neutral- current neutrino energy spectra in the two detectors, using a 3+13+1 sterile neutrino model, yields no evidence of sterile neutrino mixing. A world-leading limit on the sterile mixing angle sin2θ24\sin^2 \theta_{24} is set for many values of the sterile neutrino mass-splitting Δm412>104\Delta m^2_{41} \gt 10^{-4}\,eV2^2.A search for sterile neutrinos was performed by looking for muon neutrino disappearance using the MINOS/MINOS+ detectors. The two detectors are at baselines of 1.04\,km and 735\,km from the neutrino production target of the NuMI neutrino beam at Fermilab. The data exposure consists of 10.56×1020\times10^{20}\,protons-on-target from a beam configuration with a neutrino energy distribution peaked at 3\,GeV and a further 5.8×1020\times10^{20}\,protons-on-target in a higher energy configuration with a beam peak energy of 7\,GeV. A simultaneous analysis of the νμ\nu_\mu charged-current and neutral-current neutrino energy spectra in the two detectors, using a 3+1 sterile neutrino model, yields no evidence of sterile neutrino mixing. A world-leading limit on the sterile mixing angle sin2θ24\sin^2\theta_{24} is set for many values of the sterile neutrino mass-splitting Δm412>104\Delta m^2_{41} > 10^{-4}\,eV2^2

    Research and Development for Near Detector Systems Towards Long Term Evolution of Ultra-precise Long-baseline Neutrino Experiments

    No full text
    With the discovery of non-zero value of θ13\theta_{13} mixing angle, the next generation of long-baseline neutrino (LBN) experiments offers the possibility of obtaining statistically significant samples of muon and electron neutrinos and anti-neutrinos with large oscillation effects. In this document we intend to highlight the importance of Near Detector facilities in LBN experiments to both constrain the systematic uncertainties affecting oscillation analyses but also to perform, thanks to their close location, measurements of broad benefit for LBN physics goals. A strong European contribution to these efforts is possible

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
    corecore