41 research outputs found
The gating mechanism in cyclic nucleotide-gated ion channels
Cyclic nucleotide-gated (CNG) channels mediate transduction in several sensory neurons. These channels use the free energy of CNs' binding to open the pore, a process referred to as gating. CNG channels belong to the superfamily of voltage-gated channels, where the motion of the \uce\ub1-helix S6 controls gating in most of its members. To date, only the open, cGMP-bound, structure of a CNG channel has been determined at atomic resolution, which is inadequate to determine the molecular events underlying gating. By using electrophysiology, site-directed mutagenesis, chemical modification, and Single Molecule Force Spectroscopy, we demonstrate that opening of CNGA1 channels is initiated by the formation of salt bridges between residues in the C-linker and S5 helix. These events trigger conformational changes of the \uce\ub1-helix S5, transmitted to the P-helix and leading to channel opening. Therefore, the superfamily of voltage-gated channels shares a similar molecular architecture but has evolved divergent gating mechanisms
Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of \u3b1-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels
Quenched phosphorescence as alternative detection mode in the chiral separation of methotrexate by electrokinetic chromatography
Quenched phosphorescence was used, for the first time, as detection mode in the chiral separation of methotrexate (MTX) enantiomers by electrokinetic chromatography. The detection is based on dynamic quenching of the strong emission of the phosphorophore 1-bromo-4-naphthalene sulfonic acid (BrNS) by MTX under deoxygenated conditions. The use of a background electrolyte with 3 mg/mL 2-hydroxypropyl-β-cyclodextrin and 20% MeOH in 25 mM phosphate buffer (pH 7.0) and an applied voltage of 30 kV allowed the separation of l-MTX and its enantiomeric impurity d-MTX with sufficient resolution. In the presence of 1 mM BrNS, a detection limit of 3.2 × 10−7 M was achieved, about an order of magnitude better than published techniques based on UV absorption. The potential of the method was demonstrated with a degradation study and an enantiomeric purity assessment of l-MTX. Furthermore, l-MTX was determined in a cell culture extract as a proof-of-principle experiment to show the applicability of the method to biological samples
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): a randomised controlled trial in India, Sri Lanka, and Bangladesh
Background: Although therapeutic hypothermia reduces death or disability after neonatal encephalopathy in high-income countries, its safety and efficacy in low-income and middle-income countries is unclear. We aimed to examine whether therapeutic hypothermia alongside optimal supportive intensive care reduces death or moderate or severe disability after neonatal encephalopathy in south Asia. Methods: We did a multicountry open-label, randomised controlled trial in seven tertiary neonatal intensive care units in India, Sri Lanka, and Bangladesh. We enrolled infants born at or after 36 weeks of gestation with moderate or severe neonatal encephalopathy and a need for continued resuscitation at 5 min of age or an Apgar score of less than 6 at 5 min of age (for babies born in a hospital), or both, or an absence of crying by 5 min of age (for babies born at home). Using a web-based randomisation system, we allocated infants into a group receiving whole body hypothermia (33·5°C) for 72 h using a servo-controlled cooling device, or to usual care (control group), within 6 h of birth. All recruiting sites had facilities for invasive ventilation, cardiovascular support, and access to 3 Tesla MRI scanners and spectroscopy. Masking of the intervention was not possible, but those involved in the magnetic resonance biomarker analysis and neurodevelopmental outcome assessments were masked to the allocation. The primary outcome was a combined endpoint of death or moderate or severe disability at 18–22 months, assessed by the Bayley Scales of Infant and Toddler Development (third edition) and a detailed neurological examination. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT02387385. Findings: We screened 2296 infants between Aug 15, 2015, and Feb 15, 2019, of whom 576 infants were eligible for inclusion. After exclusions, we recruited 408 eligible infants and we assigned 202 to the hypothermia group and 206 to the control group. Primary outcome data were available for 195 (97%) of the 202 infants in the hypothermia group and 199 (97%) of the 206 control group infants. 98 (50%) infants in the hypothermia group and 94 (47%) infants in the control group died or had a moderate or severe disability (risk ratio 1·06; 95% CI 0·87–1·30; p=0·55). 84 infants (42%) in the hypothermia group and 63 (31%; p=0·022) infants in the control group died, of whom 72 (36%) and 49 (24%; p=0·0087) died during neonatal hospitalisation. Five serious adverse events were reported: three in the hypothermia group (one hospital readmission relating to pneumonia, one septic arthritis, and one suspected venous thrombosis), and two in the control group (one related to desaturations during MRI and other because of endotracheal tube displacement during transport for MRI). No adverse events were considered causally related to the study intervention. Interpretation: Therapeutic hypothermia did not reduce the combined outcome of death or disability at 18 months after neonatal encephalopathy in low-income and middle-income countries, but significantly increased death alone. Therapeutic hypothermia should not be offered as treatment for neonatal encephalopathy in low-income and middle-income countries, even when tertiary neonatal intensive care facilities are available. Funding: National Institute for Health Research, Garfield Weston Foundation, and Bill & Melinda Gates Foundation. Translations: For the Hindi, Malayalam, Telugu, Kannada, Singhalese, Tamil, Marathi and Bangla translations of the abstract see Supplementary Materials section
Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte
Eosinophil granulocytes reside in respiratory mucosa including lungs, in the gastro-intestinal tract, and in lymphocyte associated organs, the thymus, lymph nodes and the spleen. In parasitic infections, atopic diseases such as atopic dermatitis and asthma, the numbers of the circulating eosinophils are frequently elevated. In conditions such as Hypereosinophilic Syndrome (HES) circulating eosinophil levels are even further raised. Although, eosinophils were identified more than hundred years ago, their roles in homeostasis and in disease still remain unclear. The most prominent feature of the eosinophils are their large secondary granules, each containing four basic proteins, the best known being the eosinophil cationic protein (ECP). This protein has been developed as a marker for eosinophilic disease and quantified in biological fluids including serum, bronchoalveolar lavage and nasal secretions. Elevated ECP levels are found in T helper lymphocyte type 2 (atopic) diseases such as allergic asthma and allergic rhinitis but also occasionally in other diseases such as bacterial sinusitis. ECP is a ribonuclease which has been attributed with cytotoxic, neurotoxic, fibrosis promoting and immune-regulatory functions. ECP regulates mucosal and immune cells and may directly act against helminth, bacterial and viral infections. The levels of ECP measured in disease in combination with the catalogue of known functions of the protein and its polymorphisms presented here will build a foundation for further speculations of the role of ECP, and ultimately the role of the eosinophil
Conformational rearrangements in the S6 domain and C-linker during gating in CNGA1 channels.
Item does not contain fulltextThis work completes previous findings and, using cysteine scanning mutagenesis (CSM) and biochemical methods, provides detailed analysis of conformational changes of the S6 domain and C-linker during gating of CNGA1 channels. Specific residues between Phe375 and Val424 were mutated to a cysteine in the CNGA1 and CNGA1(cys-free) background and the effect of intracellular Cd(2+) or cross-linkers of different length in the open and closed state was studied. In the closed state, Cd(2+) ions inhibited mutant channels A406C and Q409C and the longer cross-linker reagent M-4-M inhibited mutant channels A406C(cys-free) and Q409C(cys-free). Cd(2+) ions inhibited mutant channels D413C and Y418C in the open state, both constructed in a CNGA1 and CNGA1(cys-free) background. Our results suggest that, in the closed state, residues from Phe375 to approximately Ala406 form a helical bundle with a three-dimensional (3D) structure similar to those of the KcsA; furthermore, in the open state, residues from Ser399 to Gln409 in homologous subunits move far apart, as expected from the gating in K(+) channels; in contrast, residues from Asp413 to Tyr418 in homologous subunits become closer in the open state