71 research outputs found

    Project risk screening matrix for stream management and restoration

    Get PDF
    The ‘Project Risk Screening Matrix’ derives from a broader effort to assist US government agency staff in reviewing proposed stream management and restoration projects more efficiently and effectively. The River Restoration Analysis Tool (RiverRAT) developed through this effort provides a thorough, comprehensive and auditable approach to review and evaluation of proposed stream actions and projects (www.restorationreview.com). The matrix was initially developed as the first step in applying the RiverRAT, its purpose being to assist reviewers in assessing the risk to natural resources associated with a particular proposal and matching the intensity of their review to the severity of that risk. Hence, the primary application of the matrix to date has been to identify and screen out low risk projects that may be dealt with expeditiously, and so freeing the time and technical resources needed to allow deep reviews of higher risk projects. A second form of screening emerged from this primary function because the matrix proved adept at identifying the minimum level of site and project characterization required to support initial risk assessment. On this basis, proposals lacking adequate information can also be screened out, being referred back to the proponent with a request for additional information. More recently, new and novel versions of the matrix, featuring modification and refinement of one or both of the original axes, have emerged to widen and refine its application to linear infrastructure (e.g. pipelines, roads, and electrical transmission lines), instream structures (e.g. large wood placement and culvert removal), and pre-application, regulatory, decision-support tools

    Project risk screening matrix for stream management and restoration

    Get PDF
    The ‘Project Risk Screening Matrix’ derives from a broader effort to assist US government agency staff in reviewing proposed stream management and restoration projects more efficiently and effectively. The River Restoration Analysis Tool (RiverRAT) developed through this effort provides a thorough, comprehensive and auditable approach to review and evaluation of proposed stream actions and projects (www.restorationreview.com). The matrix was initially developed as the first step in applying the RiverRAT, its purpose being to assist reviewers in assessing the risk to natural resources associated with a particular proposal and matching the intensity of their review to the severity of that risk. Hence, the primary application of the matrix to date has been to identify and screen out low risk projects that may be dealt with expeditiously, and so freeing the time and technical resources needed to allow deep reviews of higher risk projects. A second form of screening emerged from this primary function because the matrix proved adept at identifying the minimum level of site and project characterization required to support initial risk assessment. On this basis, proposals lacking adequate information can also be screened out, being referred back to the proponent with a request for additional information. More recently, new and novel versions of the matrix, featuring modification and refinement of one or both of the original axes, have emerged to widen and refine its application to linear infrastructure (e.g. pipelines, roads, and electrical transmission lines), instream structures (e.g. large wood placement and culvert removal), and pre-application, regulatory, decision-support tools

    Kawasaki Disease Patient Stratification and Pathway Analysis Based on Host Transcriptomic and Proteomic Profiles

    Get PDF
    The aetiology of Kawasaki disease (KD), an acute inflammatory disorder of childhood, remains unknown despite various triggers of KD having been proposed. Host ‘omic profiles offer insights into the host response to infection and inflammation, with the interrogation of multiple ‘omic levels in parallel providing a more comprehensive picture. We used differential abundance analysis, pathway analysis, clustering, and classification techniques to explore whether the host response in KD is more similar to the response to bacterial or viral infections at the transcriptomic and proteomic levels through comparison of ‘omic profiles from children with KD to those with bacterial and viral infections. Pathways activated in patients with KD included those involved in anti-viral and anti-bacterial responses. Unsupervised clustering showed that the majority of KD patients clustered with bacterial patients on both ‘omic levels, whilst application of diagnostic signatures specific for bacterial and viral infections revealed that many transcriptomic KD samples had low probabilities of having bacterial or viral infections, suggesting that KD may be triggered by a different process not typical of either common bacterial or viral infections. Clustering based on the transcriptomic and proteomic responses during KD revealed three clusters of KD patients on both ‘omic levels, suggesting heterogeneity within the inflammatory response during KD. The observed heterogeneity may reflect differences in the host response to a common trigger, or variation dependent on different triggers of the condition

    A multi-platform approach to identify a blood-based host protein signature for distinguishing between bacterial and viral infections in febrile children (PERFORM): a multi-cohort machine learning study

    Full text link
    Background: Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to infection can provide useful insights and can lead to the identification of biomarkers of infection with diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to health-care settings with fever or a history of fever in the previous 72 h. Methods: In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial and viral infections was identified from the selected proteins. The performance of this signature was finally tested using Luminex assays and by calculating disease risk scores. Findings: 376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum samples were collected for the generation of the SomaScan dataset, 147 plasma samples for the MS-A dataset, and 150 plasma samples for the MS-B dataset. Differential abundance analysis, and the first round of feature selection using FS-PLS identified 35 protein biomarker candidates, of which 13 had commercial ELISA or Luminex tests available. 16 proteins with ELISA or Luminex tests available were identified by literature review. Further evaluation via Luminex and ELISA and the second round of feature selection using FS-PLS revealed a six-protein signature: three of the included proteins are elevated in bacterial infections (SELE, NGAL, and IFN-γ), and three are elevated in viral infections (IL18, NCAM1, and LG3BP). Performance testing of the signature using Luminex assays revealed area under the receiver operating characteristic curve values between 89·4% and 93·6%. Interpretation: This study has led to the identification of a protein signature that could be ultimately developed into a blood-based point-of-care diagnostic test for rapidly diagnosing bacterial and viral infections in febrile children. Such a test has the potential to greatly improve care of children who are febrile, ensuring that the correct individuals receive antibiotics

    A multi-platform approach to identify a blood-based host protein signature for distinguishing between bacterial and viral infections in febrile children (PERFORM): a multi-cohort machine learning study.

    Get PDF
    BACKGROUND Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to infection can provide useful insights and can lead to the identification of biomarkers of infection with diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to health-care settings with fever or a history of fever in the previous 72 h. METHODS In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial and viral infections was identified from the selected proteins. The performance of this signature was finally tested using Luminex assays and by calculating disease risk scores. FINDINGS 376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum samples were collected for the generation of the SomaScan dataset, 147 plasma samples for the MS-A dataset, and 150 plasma samples for the MS-B dataset. Differential abundance analysis, and the first round of feature selection using FS-PLS identified 35 protein biomarker candidates, of which 13 had commercial ELISA or Luminex tests available. 16 proteins with ELISA or Luminex tests available were identified by literature review. Further evaluation via Luminex and ELISA and the second round of feature selection using FS-PLS revealed a six-protein signature: three of the included proteins are elevated in bacterial infections (SELE, NGAL, and IFN-γ), and three are elevated in viral infections (IL18, NCAM1, and LG3BP). Performance testing of the signature using Luminex assays revealed area under the receiver operating characteristic curve values between 89·4% and 93·6%. INTERPRETATION This study has led to the identification of a protein signature that could be ultimately developed into a blood-based point-of-care diagnostic test for rapidly diagnosing bacterial and viral infections in febrile children. Such a test has the potential to greatly improve care of children who are febrile, ensuring that the correct individuals receive antibiotics. FUNDING European Union's Horizon 2020 research and innovation programme, the European Union's Seventh Framework Programme (EUCLIDS), Imperial Biomedical Research Centre of the National Institute for Health Research, the Wellcome Trust and Medical Research Foundation, Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Grupos de Refeencia Competitiva, Swiss State Secretariat for Education, Research and Innovation

    Fatal Pediatric COVID-19 Case With Seizures and Fulminant Cerebral Edema

    Get PDF
    The novel coronavirus, SARS-CoV-2, can present with a wide range of neurological manifestations, in both adult and pediatric populations. We describe here the case of a previously healthy 8-year-old girl who presented with seizures, encephalopathy, and rapidly progressive, diffuse, and ultimately fatal cerebral edema in the setting of acute COVID-19 infection. CSF analysis, microbiological testing, and neuropathology yielded no evidence of infection or acute inflammation within the central nervous system. Acute fulminant cerebral edema (AFCE) is an often fatal pediatric clinical entity consisting of fever, encephalopathy, and new-onset seizures followed by rapid, diffuse, and medically-refractory cerebral edema. AFCE occurs as a rare complication of a variety of common pediatric infections and a CNS pathogen is identified in only a minority of cases, suggesting a para-infectious mechanism of edema. This report suggests that COVID-19 infection can precipitate AFCE, and highlights the need for high suspicion and early recognition thereof

    Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period

    Get PDF

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link
    corecore