16 research outputs found
Mesoproterozoic surface oxygenation accompanied major sedimentary manganese deposition at 1.4 and 1.1 Ga
This research was funded by the Australian Science and Industry Endowment Fund (SIEF) as part of The Distal Footprints of Giant Ore Systems: UNCOVER Australia Project (RP04-063)—Capricorn Distal Footprints. EAS also thanks the donors of The American Chemical Society Petroleum Research Fund for partial support of this research (61017-ND2).Peer reviewedPublisher PD
Mineralogy and geochemistry of atypical reduction spheroids from the Tumblagooda Sandstone, Western Australia
Funding Information: This research was supported by a CSIRO Mineral Resources studentship, a Curtin University student scholarship and a Minerals Research Institute of Western Australia scholarship. The editors of Sedimentology and three anonymous reviewers are acknowledged for their assistance in improving the manuscript. We would also like to thank Mike Paxman and the Parks and Wildlife Service for permission to sample in Kalbarri National Park. Finally, the authors would like to pay tribute to the memory of Professor Nigel Trewin, whose work laid much of the foundation for this study and many others on the Tumblagooda Sandstone.Peer reviewedPostprin
High-charge 10 GeV electron acceleration in a 10 cm nanoparticle-assisted hybrid wakefield accelerator
In an electron wakefield accelerator, an intense laser pulse or charged
particle beam excites plasma waves. Under proper conditions, electrons from the
background plasma are trapped in the plasma wave and accelerated to
ultra-relativistic velocities. We present recent results from a
proof-of-principle wakefield acceleration experiment that reveal a unique
synergy between a laser-driven and particle-driven accelerator: a high-charge
laser-wakefield accelerated electron bunch can drive its own wakefield while
simultaneously drawing energy from the laser pulse via direct laser
acceleration. This process continues to accelerate electrons beyond the usual
decelerating phase of the wakefield, thus reaching much higher energies. We
find that the 10-centimeter-long nanoparticle-assisted wakefield accelerator
can generate 340 pC, 10.4+-0.6 GeV electron bunches with 3.4 GeV RMS convolved
energy spread and 0.9 mrad RMS divergence. It can also produce bunches with
lower energy, a few percent energy spread, and a higher charge. This
synergistic mechanism and the simplicity of the experimental setup represent a
step closer to compact tabletop particle accelerators suitable for applications
requiring high charge at high energies, such as free electron lasers or
radiation sources producing muon beams
Redox-controlled selenide mineralization in the Upper Old Red Sandstone
<p>Selenium concentrations occur in organic-rich lithologies such as coal, and as secondary accumulations from the oxidative
mobilization, migration and subsequent concentration upon encountering reductants such as organic matter or H<sub>2</sub>S. Here we assess the redox mineralization of copper and lead selenide phases in the cores of reduction spheroids in Devonian
sedimentary red beds. We propose that the selenide mineralization occurred as descending meteoric fluids, supplied with selenium
from Carboniferous coal seams, migrated through a major fault plane into underlying sandstones where localized, microbially-induced
reducing conditions prevailed. These findings and other occurrences of selenide mineralization between Devonian and Carboniferous
strata on the British Isles suggest a widespread selenide mineralization system between strata of that age.
</p
Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia
In this study, we compared traditional lithochemical sample media (soil) with hydrochemical (groundwater), biogeochemical (plant matter of mulga and spinifex), and other near-surface sample media (ferro-manganese crust), in a case study applied to mineral exploration in weathered terrain, through the critical zone at the fault-hosted Prairie and Wolf Zn–Pb (Ag) deposits in Western Australia. We used multi-element geochemistry analyses to spatially identify geochemical anomalies in samples over known mineralization, and investigated metal dispersion processes. In all near-surface sample media, high concentrations of the metals of interest (Zn, Pb, Ag) coincided with samples proximal to the mineralization at depth. However, the lateral dispersion of these elements differed from regional (several km; groundwater) to local (several 100′s of meters; solid sample media) scales. Zinc in spinifex leaves over the Prairie and Wolf deposits exceeded the total concentrations in all other sample media, while the metal concentrations in mulga phyllodes were not as pronounced, except for Ag, which exceeded the concentrations in all other sample media. These observations indicate potential preferential metal-specific uptake by different media. Pathfinder elements in vegetation and groundwater samples also indicated the Prairie Downs fault zone at the regional (groundwater) and local (vegetation) scale, and are, therefore, potentially useful tools to trace fault systems that host structurally controlled, hydrothermal Zn–Pb mineralization
Copper Isotope Fractionation in Archean Hydrothermal Systems: Evidence From the Mesoarchean Carlow Castle Cu‐Co‐Au Deposit
Abstract Copper isotope analysis has emerged as a promising tool for understanding genetic processes in Cu ore deposits. However, applications of this analytical technique to Archean Cu deposits have been extremely limited, even though Archean terranes are among the most economically endowed on Earth. As such, this study presents the first Cu isotope analysis of an Archean Cu deposit, the Mesoarchean Carlow Castle hydrothermal Cu‐Co‐Au deposit. Archean primary Cu sulfide ore samples and Cenozoic supergene Cu ore samples were analyzed. Primary ore samples are isotopically light, with δ65Cu values ranging between −0.80 ± 0.02‰ and 0.00 ± 0.007‰, whilst supergene samples are isotopically heavier and range between −0.50 ± 0.01‰ and 0.62 ± 0.005‰. In primary ore samples, a relationship is observed between the Cu isotope signature, ore grade, and alteration assemblage that records the isotopic and physicochemical evolution of the Carlow Castle deposit's hydrothermal ore‐forming system. A mafic igneous source is suggested as a metal source in the Carlow Castle Cu‐Co‐Au deposit. The limited heavy isotopic fractionation of supergene Cu ore samples in this study is interpreted to reflect limited redox cycling of Cu due to in situ oxidative weathering of vein‐hosted Cu sulfides in the overlying Cenozoic supergene system. This differs from previously studied deposits where significant Cu transport and multiple stages of isotopic enrichment are often evident in supergene Cu enrichment layers. The results of this study suggest that Cu isotope analysis could be valuable in understanding genetic processes in hydrothermal Cu deposits, including Archean ore deposits and terranes
Thigh-length compression stockings and DVT after stroke
Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator
An intense laser pulse focused onto a plasma can excite nonlinear plasma waves. Under appropriate conditions, electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities. This scheme is called a laser wakefield accelerator. In this work, we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields. We find that a 10-cm-long, nanoparticle-assisted laser wakefield accelerator can generate 340 pC, 10 ± 1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence. It can also produce bunches with lower energies in the 4–6 GeV range
The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator
An intense laser pulse focused onto a plasma can excite nonlinear plasma waves. Under appropriate conditions, electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities. This scheme is called a laser wakefield accelerator. In this work, we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields. We find that a 10-cm-long, nanoparticle-assisted laser wakefield accelerator can generate 340 pC, 10 ± 1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence. It can also produce bunches with lower energies in the 4–6 GeV range