Abstract

An intense laser pulse focused onto a plasma can excite nonlinear plasma waves. Under appropriate conditions, electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities. This scheme is called a laser wakefield accelerator. In this work, we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields. We find that a 10-cm-long, nanoparticle-assisted laser wakefield accelerator can generate 340 pC, 10 ± 1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence. It can also produce bunches with lower energies in the 4–6 GeV range

    Similar works