114 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Transpiração e crescimento foliar de crisùntemo em função da fração de ågua transpiråvel no substrato

    Get PDF
    The objective of this work was to evaluate the response of transpiration and leaf growth of chrysanthemum (Dendranthema grandiflorum) cultivars to available water in the substrate, represented by the fraction of transpirable substrate water (FTbSW). The experiments were performed in two periods, in a completely randomized design, with four chrysanthemum cultivars (Cherie White, Bronze Repin, Yoapple Valley, and Calabria), under two substrate water conditions (with or without water stress), with 10 replicates. Plants were grown in a greenhouse, in 2.8-L pots with substrate. FTSbW, transpiration, and leaf growth were measured daily, during the period of water deficit. The average threshold FTSbW, indicating that transpiration and leaf growth began to be affected, was respectively 0.63 and 0.68 for 'Cherie White', 0.60 and 0.69 for 'Bronze Repin', 0.53 and 0.59 for 'Yoapple Valley', and 0.51 and 0.54 for 'Calabria'. Available water decrease in the substrate reduces leaf growth before restricting transpiration. The Cherie White and Bronze Repin cultivars are more tolerant to water deficit by closing the stomata earlier and retaining more water in the substrate than the Yoapple Valley and Calabria cultivars.O objetivo deste trabalho foi avaliar a resposta da transpiração e do crescimento foliar de cultivares de crisĂąntemo (Dendranthema grandiflorum) ao conteĂșdo de ĂĄgua disponĂ­vel no substrato, representado pela fração de ĂĄgua transpirĂĄvel no substrato (FATSb). Os experimentos foram realizados em dois perĂ­odos, em delineamento inteiramente casualizado, com quatro cultivares de crisĂąntemo (Cherie White, Bronze Repin, Yoapple Valley e Calabria), em duas condiçÔes hĂ­dricas (com ou sem deficiĂȘncia hĂ­drica), com 10 repetiçÔes. As plantas foram cultivadas em casa de vegetação, em vasos de 2,8 L preenchidos com substrato. A FATSb, a transpiração e o crescimento foliar foram determinados diariamente durante o perĂ­odo de deficiĂȘncia hĂ­drica. As FATSb crĂ­ticas mĂ©dias, indicativas de que a transpiração e o crescimento foliar começam a ser afetados, foram respectivamente de 0,63 e 0,68 para 'Cherie White', 0,60 e 0,69 para 'Bronze Repin', 0,53 e 0,59 para 'Yoapple Valley', e 0,51 e 0,54 para 'Calabria'. A diminuição da ĂĄgua disponĂ­vel no substrato provoca a redução do crescimento foliar antes de restringir a transpiração. As cultivares Cherie White e Bronze Repin sĂŁo mais tolerantes ao deficit hĂ­drico por fechar os estĂŽmatos antes e conservar mais a ĂĄgua no substrato do que as cultivares Yoapple Valley e Calabria

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Diversity and progress in school accountability systems in Australia

    No full text
    • 

    corecore