436 research outputs found

    The Influence of Heating on Toe pressure in Patients with Peripheral Arterial Disease

    Get PDF
    Background and Aim: The toe skin temperature in vascular patients can be low, making reliable toe pressure measurements difficult to obtain. The aim of this study was to evaluate the effect of heating on the toe pressure measurements. Materials and Methods: A total of 86 legs were examined. Brachial pressure and toe pressure were measured at rest in a supine position using a laser Doppler device that also measured skin temperature. After heating the toes for 5 min with a heating pad, we re-measured the toe pressure. Furthermore, after heating the skin to 40 degrees with the probe, toe pressures were measured a third time. Results: The mean toe skin temperature at the baseline measurement was 24.0 degrees C (standard deviation: 2.8). After heating the toes for 5 min with a warm heating pad, the skin temperature rose to a mean 27.8 degrees C (standard deviation: 2.8; p = 0.000). The mean toe pressure rose from 58.5 (standard deviation: 32) to 62 (standard deviation: 32) mmHg (p = 0.029). Furthermore, after the skin was heated up to 40 degrees C with the probe, the mean toe pressure in the third measurement was 71 (standard deviation: 34) mmHg (p = 0.000). The response to the heating varied greatly between the patients after the first heatingfrom -34 mmHg (toe pressure decreased from 74 to 40 mmHg) to +91 mmHg. When the toes were heated to 40 degrees C, the change in to toe pressure from the baseline varied between -28 and +103 mmHg. Conclusion: Our data indicate that there is a different response to the heating in different clinical situations and in patients with a different comorbidity.Peer reviewe

    Pilot Assessment of the Repeatability of Indocyanine Green Fluorescence Imaging and Correlation with Traditional Foot Perfusion Assessments

    Get PDF
    Background: Ankle brachial index (ABI), toe pressures (TP), and transcutaneous oxygen pressure (TcPO2) are traditionally used in the assessment of critical limb ischemia (CLI). Indocyanine green (ICG) fluorescence imaging can be used to evaluate local circulation in the foot and to evaluate the severity of ischemia. This prospective study analyzed the suitability of a fluorescence imaging system (photodynamic eye [PDE]) in CLI. Material and methods: Forty-one patients with CLI were included. Of the patients, 66% had diabetes and there was an ischemic tissue lesion in 70% of the limbs. ABI, toe pressures, TcPO2 and ICG-fluorescence imaging (ICG-FI) were measured in each leg. To study the repeatability of the ICG-FI, each patient underwent the study twice. After the procedure, foot circulation was measured using a time-intensity curve, where T1/2 (the time needed to achieve half of the maximum fluorescence intensity) and PDE10 (increase of the intensity during the first 10 s) were determined. A time-intensity curve was plotted using the same areas as for the TcPO2 probes (n=123). Results: The mean ABI was 0.43, TP 21 mmHg, TcPO2 23 mmHg, T1/2 38 5, and PDE10 19 AU. Time-intensity curves were repeatable. In a Bland-Altman scatter plot, the 95% limits of agreement of PDE10 was 9.9 AU and the corresponding value of T1/2 was 14 s. Correlation between ABI and TP was significant (R=.73, p Conclusions: According to this pilot study, ICG-Fl with PDE can be used in the assessment of blood supply in the ischemic foot. (C) 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Lower Rate of Restenosis and Reinterventions With Covered vs Bare Metal Stents Following Innominate Artery Stenting

    Get PDF
    PURPOSE: To determine any difference between bare metal stents (BMS) and balloon-expandable covered stents in the treatment of innominate artery atheromatous lesions. MATERIALS AND METHODS: A multicenter retrospective study involving 13 university hospitals in France collected 93 patients (mean age 63.2±11.1 years; 57 men) treated over a 10-year period. All patients had systolic blood pressure asymmetry >15 mm Hg and were either asymptomatic (39, 42%) or had carotid (20, 22%), vertebrobasilar (24, 26%), and/or brachial (20, 22%) symptoms. Innominate artery stenosis ranged from 50% to 70% in 4 (4%) symptomatic cases and between 70% and 90% in 52 (56%) cases; 28 (30%) lesions were preocclusive and 8 (9%) were occluded. One (1%) severely symptomatic patient had a <50% stenosis. Demographic characteristics, operative indications, and procedure details were compared between the covered (36, 39%) and BMS (57, 61%) groups. Multivariate analysis was performed to determine relative risks of restenosis and reinterventions [reported with 95% confidence intervals (CI)]. RESULTS: The endovascular procedures were performed mainly via retrograde carotid access (75, 81%). Perioperative strokes occurred in 4 (4.3%) patients. During the mean 34.5±31.2-month follow-up, 30 (32%) restenoses were detected and 13 (20%) reinterventions were performed. Relative risks were 6.9 (95% CI 2.2 to 22.2, p=0.001) for restenosis and 14.6 (95% CI 1.8 to 120.8, p=0.004) for reinterventions between BMS and covered stents. The severity of the treated lesions had no influence on the results. CONCLUSION: Patients treated with BMS for innominate artery stenosis have more frequent restenoses and reinterventions than patients treated with covered stents

    TFEB regulates murine liver cell fate during development and regeneration

    Get PDF
    It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer

    Human cell dedifferentiation in mesenchymal condensates through controlled autophagy

    Get PDF
    Tissue and whole organ regeneration is a dramatic biological response to injury that occurs across different plant and animal phyla. It frequently requires the dedifferentiation of mature cells to a condensed mesenchymal blastema, from which replacement tissues develop. Human somatic cells cannot regenerate in this way and differentiation is considered irreversible under normal developmental conditions. Here, we sought to establish in vitro conditions to mimic blastema formation by generating different three-dimensional (3D) condensates of human mesenchymal stromal cells (MSCs). We identified specific 3D growth environments that were sufficient to dedifferentiate aged human MSCs to an early mesendoderm-like state with reversal of age-associated cell hypertrophy and restoration of organized tissue regenerating capacity in vivo. An optimal auophagic response was required to promote cytoplasmic remodeling, mitochondrial regression, and a bioenergetic shift from oxidative phosphorylation to anaerobic metabolism. Our evidence suggests that human cell dedifferentiation can be achieved through autonomously controlled autophagic flux

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    The novel estrogen-induced gene EIG121 regulates autophagy and promotes cell survival under stress

    Get PDF
    We previously identified a novel estrogen-induced gene, EIG121, as being differentially regulated in endometrioid and nonendometrioid endometrial carcinoma. The function of EIG121 was unknown. Using a tetracycline-inducible system, we found that overexpression of EIG121, but not of LacZ, caused a profound suppression of cell growth. Subcellular fractionation and immunofluroscent labeling indicated that EIG121 was a transmembrane protein localized in the plasma membrane-late endosome–lysosome compartments. Deletion of the putative transmembrane domain abolished the membrane association. In cells overexpressing EIG121, cytoplasmic vacuoles accumulated after EIG121 induction, and the autophagosome marker LC3 translocated into punctuate, dot-like structures. Electron microscopy revealed that in cells overexpressing EIG121, autophagosomes were markedly increased. Overexpression of EIG121 also increased the cells containing acidic vesicles and induced lysosomal degradation of long-lived proteins. In MCF-7 cells, both EIG121 and LC3 were rapidly degraded by a lysosomal mechanism after starvation. Knockdown of EIG121 blocked starvation-induced LC3 degradation. By itself, knockdown of EIG121 did not affect cell survival. When combined with starvation or cytotoxic agents, EIG121 knockdown greatly increased apoptosis. Our results suggest that EIG121 is associated with the endosome–lysosome compartments and may have an important role in autophagy. Under unfavorable conditions such as starvation and exposure to cytotoxic agents, EIG121 may protect cells from cell death by upregulating the autophagy pathway

    Autophagy–physiology and pathophysiology

    Get PDF
    “Autophagy” is a highly conserved pathway for degradation, by which wasted intracellular macromolecules are delivered to lysosomes, where they are degraded into biologically active monomers such as amino acids that are subsequently re-used to maintain cellular metabolic turnover and homeostasis. Recent genetic studies have shown that mice lacking an autophagy-related gene (Atg5 or Atg7) cannot survive longer than 12 h after birth because of nutrient shortage. Moreover, tissue-specific impairment of autophagy in central nervous system tissue causes massive loss of neurons, resulting in neurodegeneration, while impaired autophagy in liver tissue causes accumulation of wasted organelles, leading to hepatomegaly. Although autophagy generally prevents cell death, our recent study using conditional Atg7-deficient mice in CNS tissue has demonstrated the presence of autophagic neuron death in the hippocampus after neonatal hypoxic/ischemic brain injury. Thus, recent genetic studies have shown that autophagy is involved in various cellular functions. In this review, we introduce physiological and pathophysiological roles of autophagy

    The Lysosome and Intracellular Signalling.

    Get PDF
    In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed
    corecore